Abstract
This paper investigates the problem of exact community recovery in the symmetric d-uniform (d ≥ 2) hypergraph stochastic block model (d-HSBM). In this model, a d-uniform hypergraph with n nodes is generated by first partitioning the n nodes into K ≥ 2 equal-sized disjoint communities and then generating hyperedges with a probability that depends on the community memberships of d nodes. Despite the non-convex and discrete nature of the maximum likelihood estimation problem, we develop a simple yet efficient iterative method, called the projected tensor power method, to tackle it. As long as the initialization satisfies a partial recovery condition in the logarithmic degree regime of the problem, we show that our proposed method can exactly recover the hidden community structure down to the information-theoretic limit with high probability. Moreover, our proposed method exhibits a competitive time complexity of O(n log2 n/log log n) when the aforementioned initialization condition is met. We also conduct numerical experiments to validate our theoretical findings.
| Original language | English |
|---|---|
| Pages (from-to) | 36285-36307 |
| Number of pages | 23 |
| Journal | Proceedings of Machine Learning Research |
| Volume | 202 |
| State | Published - 2023 |
| Externally published | Yes |
| Event | 40th International Conference on Machine Learning, ICML 2023 - Honolulu, United States Duration: 23 Jul 2023 → 29 Jul 2023 |