Probabilistic attributed hashing

Mingdong Ou, Peng Cui, Jun Wang, Fei Wang, Wenwu Zhu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Scopus citations

Abstract

Due to the simplicity and efficiency, many hashing methods have recently been developed for large-scale similarity search. Most of the existing hashing methods focus on mapping low-level features to binary codes, but neglect attributes that are commonly associated with data samples. Attribute data, such as image tag, product brand, and user profile, can represent human recognition better than low-level features. However, attributes have specific characteristics, including high-dimensional, sparse and categorical properties, which is hardly leveraged into the existing hashing learning frameworks. In this paper, we propose a hashing learning framework, Probabilistic Attributed Hashing (PAH), to integrate attributes with low-level features. The connections between attributes and low-level features are built through sharing a common set of latent binary variables, i.e. hash codes, through which attributes and features can complement each other. Finally, we develop an efficient iterative learning algorithm, which is generally feasible for large-scale applications. Extensive experiments and comparison study are conducted on two public datasets, i.e., DBLP and NUS-WIDE. The results clearly demonstrate that the proposed PAH method substantially outperforms the peer methods.

Original languageEnglish
Title of host publicationProceedings of the 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
PublisherAI Access Foundation
Pages2894-2900
Number of pages7
ISBN (Electronic)9781577357025
StatePublished - 1 Jun 2015
Externally publishedYes
Event29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015 - Austin, United States
Duration: 25 Jan 201530 Jan 2015

Publication series

NameProceedings of the National Conference on Artificial Intelligence
Volume4

Conference

Conference29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
Country/TerritoryUnited States
CityAustin
Period25/01/1530/01/15

Fingerprint

Dive into the research topics of 'Probabilistic attributed hashing'. Together they form a unique fingerprint.

Cite this