TY - GEN
T1 - Probabilistic attributed hashing
AU - Ou, Mingdong
AU - Cui, Peng
AU - Wang, Jun
AU - Wang, Fei
AU - Zhu, Wenwu
N1 - Publisher Copyright:
Copyright © 2015, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2015/6/1
Y1 - 2015/6/1
N2 - Due to the simplicity and efficiency, many hashing methods have recently been developed for large-scale similarity search. Most of the existing hashing methods focus on mapping low-level features to binary codes, but neglect attributes that are commonly associated with data samples. Attribute data, such as image tag, product brand, and user profile, can represent human recognition better than low-level features. However, attributes have specific characteristics, including high-dimensional, sparse and categorical properties, which is hardly leveraged into the existing hashing learning frameworks. In this paper, we propose a hashing learning framework, Probabilistic Attributed Hashing (PAH), to integrate attributes with low-level features. The connections between attributes and low-level features are built through sharing a common set of latent binary variables, i.e. hash codes, through which attributes and features can complement each other. Finally, we develop an efficient iterative learning algorithm, which is generally feasible for large-scale applications. Extensive experiments and comparison study are conducted on two public datasets, i.e., DBLP and NUS-WIDE. The results clearly demonstrate that the proposed PAH method substantially outperforms the peer methods.
AB - Due to the simplicity and efficiency, many hashing methods have recently been developed for large-scale similarity search. Most of the existing hashing methods focus on mapping low-level features to binary codes, but neglect attributes that are commonly associated with data samples. Attribute data, such as image tag, product brand, and user profile, can represent human recognition better than low-level features. However, attributes have specific characteristics, including high-dimensional, sparse and categorical properties, which is hardly leveraged into the existing hashing learning frameworks. In this paper, we propose a hashing learning framework, Probabilistic Attributed Hashing (PAH), to integrate attributes with low-level features. The connections between attributes and low-level features are built through sharing a common set of latent binary variables, i.e. hash codes, through which attributes and features can complement each other. Finally, we develop an efficient iterative learning algorithm, which is generally feasible for large-scale applications. Extensive experiments and comparison study are conducted on two public datasets, i.e., DBLP and NUS-WIDE. The results clearly demonstrate that the proposed PAH method substantially outperforms the peer methods.
UR - https://www.scopus.com/pages/publications/84960156560
M3 - 会议稿件
AN - SCOPUS:84960156560
T3 - Proceedings of the National Conference on Artificial Intelligence
SP - 2894
EP - 2900
BT - Proceedings of the 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
PB - AI Access Foundation
T2 - 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
Y2 - 25 January 2015 through 30 January 2015
ER -