Polydopamine nanodots are viable probes for fluorometric determination of the activity of alkaline phosphatase via the in situ regulation of a redox reaction triggered by the enzyme

Qin Xue, Xuanyu Cao, Cuiling Zhang, Yuezhong Xian

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

The authors describe an environmentally friendly and fast (~14 min) method for the synthesis of homogeneously distributed fluorescent polydopamine nanodots (PDA-NDs) using KMnO4 as the oxidant. Alkaline phosphatase (ALP) catalyzes the hydrolysis of ascorbic acid 2-phosphate to release free ascorbic acid which undergoes an in-situ redox reaction with KMnO4. Depending on the activity of ALP, more or less KMnO4 is consumed, and this affects the formation of the PDA-NDs. Based on this finding, a sensitive method was worked out to quantify the activity of ALP via real-time formation of fluorescent PDA-NDs. The fluorometric signal (best measured at excitation/emission peaks of 390/500 nm) is linear in the 1 to 50 mU·mL−1 ALP activity range, and the limit of the detection is as low as 0.94 mU·mL−1 (based on 3 σ/m). The method was successfully applied to the determination of ALP activity in spiked human serum and in MCF-7 cell lysates. It was also applied in a method to screen for inhibitors of ALP. [Figure not available: see fulltext.].

Original languageEnglish
Article number231
JournalMicrochimica Acta
Volume185
Issue number4
DOIs
StatePublished - 1 Apr 2018

Keywords

  • Ascorbic acid 2-phosphate
  • Bioassay
  • Cell lysates
  • Fluorescent polymer
  • Inhibitor screening
  • Polymer quantum dots

Fingerprint

Dive into the research topics of 'Polydopamine nanodots are viable probes for fluorometric determination of the activity of alkaline phosphatase via the in situ regulation of a redox reaction triggered by the enzyme'. Together they form a unique fingerprint.

Cite this