TY - JOUR
T1 - Photonic-based analog and digital RF self-interference cancellation with high spectral efficiency
AU - Shi, Taixia
AU - Han, Moxuan
AU - Chen, Yang
N1 - Publisher Copyright:
© 2021 Optical Society of America.
PY - 2021/11/20
Y1 - 2021/11/20
N2 - A photonic-assisted analog and digital radio frequency (RF) self-interference cancellation (SIC) approach with high spectral efficiency is reported for base stations in in-band full-duplex radio-over-fiber systems on the basis of our previous research. One dual-polarization quadrature phase-shift keying (DP-QPSK) modulator is used as the canceller for one base station. The two dual-parallelMach-Zehnder modulators of the DP-QPSK modulator are both biased as carrier-suppressed single-sideband modulators and driven by the received signal and reference signal, respectively, to achieve high spectral efficiency while implementing the SIC in the optical domain. The baseband optical signal after SIC is further transmitted to the central station, where the electrical signal is recovered, sampled, and processed to further suppress the residual self-interference in the digital domain by using the recursive least-square (RLS) algorithm. An experiment is then performed. The proposed system is demonstrated by employing two independent channels. The analog cancellation depths of the 200, 500, and 800 Mbaud QPSK-modulated self-interferences are around 24, 20, and 20 dB, respectively; the total cancellation depths are around 29, 28, and 25 dB, respectively, when the analog cancellation and the RLS algorithm digital cancellation are applied.Meanwhile, the fiber distribution has no significant influence on SIC performance.
AB - A photonic-assisted analog and digital radio frequency (RF) self-interference cancellation (SIC) approach with high spectral efficiency is reported for base stations in in-band full-duplex radio-over-fiber systems on the basis of our previous research. One dual-polarization quadrature phase-shift keying (DP-QPSK) modulator is used as the canceller for one base station. The two dual-parallelMach-Zehnder modulators of the DP-QPSK modulator are both biased as carrier-suppressed single-sideband modulators and driven by the received signal and reference signal, respectively, to achieve high spectral efficiency while implementing the SIC in the optical domain. The baseband optical signal after SIC is further transmitted to the central station, where the electrical signal is recovered, sampled, and processed to further suppress the residual self-interference in the digital domain by using the recursive least-square (RLS) algorithm. An experiment is then performed. The proposed system is demonstrated by employing two independent channels. The analog cancellation depths of the 200, 500, and 800 Mbaud QPSK-modulated self-interferences are around 24, 20, and 20 dB, respectively; the total cancellation depths are around 29, 28, and 25 dB, respectively, when the analog cancellation and the RLS algorithm digital cancellation are applied.Meanwhile, the fiber distribution has no significant influence on SIC performance.
UR - https://www.scopus.com/pages/publications/85119403577
U2 - 10.1364/AO.439709
DO - 10.1364/AO.439709
M3 - 文章
AN - SCOPUS:85119403577
SN - 1559-128X
VL - 60
SP - 10299
EP - 10304
JO - Applied Optics
JF - Applied Optics
IS - 33
ER -