Phase Separation in the Advective Cahn–Hilliard Equation

Yu Feng, Yuanyuan Feng, Gautam Iyer, Jean Luc Thiffeault

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

The Cahn–Hilliard equation is a classic model of phase separation in binary mixtures that exhibits spontaneous coarsening of the phases. We study the Cahn–Hilliard equation with an imposed advection term in order to model the stirring and eventual mixing of the phases. The main result is that if the imposed advection is sufficiently mixing, then no phase separation occurs, and the solution instead converges exponentially to a homogeneous mixed state. The mixing effectiveness of the imposed drift is quantified in terms of the dissipation time of the associated advection–hyperdiffusion equation, and we produce examples of velocity fields with a small dissipation time. We also study the relationship between this quantity and the dissipation time of the standard advection–diffusion equation.

Original languageEnglish
Pages (from-to)2821-2845
Number of pages25
JournalJournal of Nonlinear Science
Volume30
Issue number6
DOIs
StatePublished - 1 Dec 2020
Externally publishedYes

Keywords

  • Cahn–Hilliard equation
  • Enhanced dissipation
  • Mixing

Fingerprint

Dive into the research topics of 'Phase Separation in the Advective Cahn–Hilliard Equation'. Together they form a unique fingerprint.

Cite this