TY - JOUR
T1 - pH-Regulated H4TCPE@Eu/AMP ICP Sensor Array and Its Fingerprinting on Test Papers
T2 - Toward Point-of-Use Systematic Analysis of Environmental Antibiotics
AU - Huang, Chunyu
AU - Luo, Yuxin
AU - Li, Jiacheng
AU - Liu, Chang
AU - Zhou, Tianshu
AU - Deng, Jingjing
N1 - Publisher Copyright:
© 2021 American Chemical Society
PY - 2021/7/6
Y1 - 2021/7/6
N2 - In this work, 1,1,2,2-tetra(4-carboxylphenyl)ethylene (H4TCPE) was selected as the guest and incorporated into a Eu/AMP ICP host to establish a “lab-on-an-AIE@Ln/ICP” sensor array for identifying and sensing environmental antibiotics simultaneously. First, on the basis of a theoretical study of the antenna effect and reductive photoinduced charge transfer between the as-prepared H4TCPE@Eu/AMP ICPs and antibiotics, respectively, the response from the sensitized time-resolved fluorescence of the host and the unique aggregation-induced emission (AIE) of the guest were selected as the main sensing elements for the sensor array. With the regulation of pH, the diverse fluorescence responses for antibiotics with either structural differences (flumequine, oxytetracycline, and sulfadiazine) or structural similarities (oxytetracycline, tetracycline, and doxycycline) were recorded and processed by principal component analysis; systematic analysis of environmental antibiotics was therefore realized. Encouraged by the superior anti-aggregation-caused quenching effect of H4TCPE@Eu/AMP ICPs on the test strip, the distinct fluorescence color changes of the “lab-on-an-AIE@Ln/ICP” sensor array were further explored with the aid of smartphones. The fingerprinting pattern of the sensor array on test paper eventually holds great potential for the point-of-use systematic analysis of environmental antibiotics even in complicated real samples.
AB - In this work, 1,1,2,2-tetra(4-carboxylphenyl)ethylene (H4TCPE) was selected as the guest and incorporated into a Eu/AMP ICP host to establish a “lab-on-an-AIE@Ln/ICP” sensor array for identifying and sensing environmental antibiotics simultaneously. First, on the basis of a theoretical study of the antenna effect and reductive photoinduced charge transfer between the as-prepared H4TCPE@Eu/AMP ICPs and antibiotics, respectively, the response from the sensitized time-resolved fluorescence of the host and the unique aggregation-induced emission (AIE) of the guest were selected as the main sensing elements for the sensor array. With the regulation of pH, the diverse fluorescence responses for antibiotics with either structural differences (flumequine, oxytetracycline, and sulfadiazine) or structural similarities (oxytetracycline, tetracycline, and doxycycline) were recorded and processed by principal component analysis; systematic analysis of environmental antibiotics was therefore realized. Encouraged by the superior anti-aggregation-caused quenching effect of H4TCPE@Eu/AMP ICPs on the test strip, the distinct fluorescence color changes of the “lab-on-an-AIE@Ln/ICP” sensor array were further explored with the aid of smartphones. The fingerprinting pattern of the sensor array on test paper eventually holds great potential for the point-of-use systematic analysis of environmental antibiotics even in complicated real samples.
UR - https://www.scopus.com/pages/publications/85110312568
U2 - 10.1021/acs.analchem.1c01214
DO - 10.1021/acs.analchem.1c01214
M3 - 文章
AN - SCOPUS:85110312568
SN - 0003-2700
VL - 93
SP - 9183
EP - 9192
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 26
ER -