Persistent memory residual network for single image super resolution

Rong Chen, Yanyun Qu, Kun Zeng, Jinkang Guo, Cuihua Li, Yuan Xie

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

25 Scopus citations

Abstract

Progresses has been witnessed in single image superresolution in which the low-resolution images are simulated by bicubic downsampling. However, for the complex image degradation in the wild such as downsampling, blurring, noises, and geometric deformation, the existing superresolution methods do not work well. Inspired by a persistent memory network which has been proven to be effective in image restoration, we implement the core idea of human memory on the deep residual convolutional neural network. Two types of memory blocks are designed for the NTIRE2018 challenge. We embed the two types of memory blocks in the framework of enhanced super resolution network (EDSR), which is the NTIRE2017 champion method. The residual blocks of EDSR is replaced by two types of memory blocks. The first type of memory block is a residual module, and one memory block contains four residual modules with four residual blocks followed by a gate unit, which adaptively selects the features needed to store. The second type of memory block is a residual dilated convolutional block, which contains seven dilated convolution layers linked to a gate unit. The two proposed models not only improve the super-resolution performance but also mitigate the image degradation of noises and blurring. Experimental results on the DIV2K dataset demonstrate our models achieve better performance than EDSR.

Original languageEnglish
Title of host publicationProceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2018
PublisherIEEE Computer Society
Pages922-929
Number of pages8
ISBN (Electronic)9781538661000
DOIs
StatePublished - 13 Dec 2018
Externally publishedYes
Event31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2018 - Salt Lake City, United States
Duration: 18 Jun 201822 Jun 2018

Publication series

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Volume2018-June
ISSN (Print)2160-7508
ISSN (Electronic)2160-7516

Conference

Conference31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2018
Country/TerritoryUnited States
CitySalt Lake City
Period18/06/1822/06/18

Fingerprint

Dive into the research topics of 'Persistent memory residual network for single image super resolution'. Together they form a unique fingerprint.

Cite this