Patch proposal network for fast semantic segmentation of high-resolution images

Tong Wu, Zhenzhen Lei, Bingqian Lin, Cuihua Li, Yanyun Qu, Yuan Xie

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

35 Scopus citations

Abstract

Despite recent progress on the segmentation of high-resolution images, there exist an unsolved problem, i.e., the trade-off among the segmentation accuracy, memory resources and inference speed. So far, GLNet is introduced for high or ultra-resolution image segmentation, which has reduced the computational memory of the segmentation network. However, it ignores the importances of different cropped patches, and treats tiled patches equally for fusion with the whole image, resulting in high computational cost. To solve this problem, we introduce a patch proposal network (PPN) in this paper, which adaptively distinguishes the critical patches from the trivial ones to fuse with the whole image for refining segmentation. PPN is a classification network which alleviates network training burden and improves segmentation accuracy. We further embed PPN in a global-local segmentation network, instructing global branch and refinement branch to work collaboratively. We implement our method on four image datasets:DeepGlobe, ISIC, CRAG and Cityscapes, the first two are ultra-resolution image datasets and the last two are high-resolution image datasets. The experimental results show that our method achieves almost the best segmentation performance compared with the state-of-the-art segmentation methods and the inference speed is 12.9 fps on DeepGlobe and 10 fps on ISIC. Moreover, we embed PPN with the general semantic segmentation network and the experimental results on Cityscapes which contains more object classes demonstrate the generalization ability on general semantic segmentation.

Original languageEnglish
Title of host publicationAAAI 2020 - 34th AAAI Conference on Artificial Intelligence
PublisherAAAI press
Pages12402-12409
Number of pages8
ISBN (Electronic)9781577358350
StatePublished - 2020
Event34th AAAI Conference on Artificial Intelligence, AAAI 2020 - New York, United States
Duration: 7 Feb 202012 Feb 2020

Publication series

NameAAAI 2020 - 34th AAAI Conference on Artificial Intelligence

Conference

Conference34th AAAI Conference on Artificial Intelligence, AAAI 2020
Country/TerritoryUnited States
CityNew York
Period7/02/2012/02/20

Fingerprint

Dive into the research topics of 'Patch proposal network for fast semantic segmentation of high-resolution images'. Together they form a unique fingerprint.

Cite this