Parallel hashing using representative points in hyperoctants

Chaomin Shen, Mixue Yu, Chenxiao Zhao, Yaxin Peng, Guixu Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The goal of hashing is to learn a low-dimensional binary representation of high-dimensional information, leading to a tremendous reduction of computational cost. Previous studies usually achieved this goal by applying projection or quantization methods. However, the projection method fails to capture the intrinsic data structures, and the quantization method cannot make full use of complete information by its strategy of partitioning original space. To combine their advantages and avoid their drawbacks, we propose a novel algorithm, termed as representative points quantization (RPQ), by using the representative points defined as the barycenters of points in the hyperoctants. To settle the problem of exponential time complexity with the growth of the coding length, for long hashing codes, we further propose a parallel RPQ (PRPQ) algorithm, by separating a long code into several short codes, re-coding the short codes in different low dimensional subspaces, and then concatenating them to a long code. Experiments on image retrieval tasks demonstrate that RPQ and PRPQ can well capture the main topology structure of data, showing that our algorithm achieves better performance than state-of-the-art methods.

Original languageEnglish
Title of host publicationCIKM 2018 - Proceedings of the 27th ACM International Conference on Information and Knowledge Management
EditorsNorman Paton, Selcuk Candan, Haixun Wang, James Allan, Rakesh Agrawal, Alexandros Labrinidis, Alfredo Cuzzocrea, Mohammed Zaki, Divesh Srivastava, Andrei Broder, Assaf Schuster
PublisherAssociation for Computing Machinery
Pages813-822
Number of pages10
ISBN (Electronic)9781450360142
DOIs
StatePublished - 17 Oct 2018
Event27th ACM International Conference on Information and Knowledge Management, CIKM 2018 - Torino, Italy
Duration: 22 Oct 201826 Oct 2018

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings

Conference

Conference27th ACM International Conference on Information and Knowledge Management, CIKM 2018
Country/TerritoryItaly
CityTorino
Period22/10/1826/10/18

Keywords

  • Approximate nearest neighbor search
  • Binary code
  • Dimensionality reduction
  • Hashing
  • Information retrieval

Fingerprint

Dive into the research topics of 'Parallel hashing using representative points in hyperoctants'. Together they form a unique fingerprint.

Cite this