Orthogonalized sgd and nested architectures for anytime neural networks

Chengcheng Wan, Henry Hoffmann, Shan Lu, Michael Maire

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

We propose a novel variant of SGD customized for training network architectures that support anytime behavior: such networks produce a series of increasingly accurate outputs over time. Efficient architectural designs for these networks focus on re-using internal state; subnetworks must produce representations relevant for both immediate prediction as well as refinement by subsequent network stages. We consider traditional branched networks as well as a new class of recursively nested networks. Our new optimizer, Orthogonalized SGD, dynamically re-balances task-specific gradients when training a multitask network. In the context of anytime architectures, this optimizer projects gradients from later outputs onto a parameter subspace that does not interfere with those from earlier outputs. Experiments demonstrate that training with Orthogonalized SGD significantly improves generalization accuracy of anytime networks.

Original languageEnglish
Title of host publication37th International Conference on Machine Learning, ICML 2020
EditorsHal Daume, Aarti Singh
PublisherInternational Machine Learning Society (IMLS)
Pages9749-9759
Number of pages11
ISBN (Electronic)9781713821120
StatePublished - 2020
Externally publishedYes
Event37th International Conference on Machine Learning, ICML 2020 - Virtual, Online
Duration: 13 Jul 202018 Jul 2020

Publication series

Name37th International Conference on Machine Learning, ICML 2020
VolumePartF168147-13

Conference

Conference37th International Conference on Machine Learning, ICML 2020
CityVirtual, Online
Period13/07/2018/07/20

Fingerprint

Dive into the research topics of 'Orthogonalized sgd and nested architectures for anytime neural networks'. Together they form a unique fingerprint.

Cite this