TY - JOUR
T1 - Optimizing anaerobic digestion
T2 - Benefits of mild temperature transition from thermophilic to mesophilic conditions
AU - Zhang, Xingxing
AU - Jiao, Pengbo
AU - Wang, Yiwei
AU - Dai, Yinying
AU - Zhang, Ming
AU - Wu, Peng
AU - Ma, Liping
N1 - Publisher Copyright:
© 2024
PY - 2024/9
Y1 - 2024/9
N2 - Anaerobic digestion (AD) plays a significant role in renewable energy recovery. Upgrading AD from thermophilic (50–57 °C) to mesophilic (30–38 °C) conditions to enhance process stability and reduce energy input remains challenging due to the high sensitivity of thermophilic microbiomes to temperature fluctuations. Here we compare the effects of two decreasing-temperature modes from 55 to 35 °C on cell viability, microbial dynamics, and interspecies interactions. A sharp transition (ST) is a one-step transition by 20 °C d−1, while a mild transition (MT) is a stepwise transition by 1 °C d−1. We find a greater decrease in methane production with ST (88.8%) compared to MT (38.9%) during the transition period. ST mode overproduced reactive oxygen species by 1.6-fold, increased membrane permeability by 2.2-fold, and downregulated microbial energy metabolism by 25.1%, leading to increased apoptosis of anaerobes by 1.9-fold and release of intracellular substances by 2.9-fold, further constraining methanogenesis. The higher (1.6 vs. 1.1 copies per gyrA) metabolic activity of acetate-dependent methanogenesis implied more efficient methane production in a steady mesophilic, MT-mediated system. Metagenomic binning and network analyses indicated that ST induced dysbiosis in keystone species and greatly enhanced microbial functional redundancy, causing loss of microbial syntrophic interactions and redundant metabolic pathways. In contrast, the greater microbial interconnections (average degrees 44.9 vs. 22.1) in MT at a steady mesophilic state suggested that MT could better maintain necessary system functionality and stability through microbial syntrophy or specialized pathways. Adopting MT to transform thermophilic digesters into mesophilic digesters is feasible and could potentially enhance the further optimization and broader application of practical anaerobic engineering.
AB - Anaerobic digestion (AD) plays a significant role in renewable energy recovery. Upgrading AD from thermophilic (50–57 °C) to mesophilic (30–38 °C) conditions to enhance process stability and reduce energy input remains challenging due to the high sensitivity of thermophilic microbiomes to temperature fluctuations. Here we compare the effects of two decreasing-temperature modes from 55 to 35 °C on cell viability, microbial dynamics, and interspecies interactions. A sharp transition (ST) is a one-step transition by 20 °C d−1, while a mild transition (MT) is a stepwise transition by 1 °C d−1. We find a greater decrease in methane production with ST (88.8%) compared to MT (38.9%) during the transition period. ST mode overproduced reactive oxygen species by 1.6-fold, increased membrane permeability by 2.2-fold, and downregulated microbial energy metabolism by 25.1%, leading to increased apoptosis of anaerobes by 1.9-fold and release of intracellular substances by 2.9-fold, further constraining methanogenesis. The higher (1.6 vs. 1.1 copies per gyrA) metabolic activity of acetate-dependent methanogenesis implied more efficient methane production in a steady mesophilic, MT-mediated system. Metagenomic binning and network analyses indicated that ST induced dysbiosis in keystone species and greatly enhanced microbial functional redundancy, causing loss of microbial syntrophic interactions and redundant metabolic pathways. In contrast, the greater microbial interconnections (average degrees 44.9 vs. 22.1) in MT at a steady mesophilic state suggested that MT could better maintain necessary system functionality and stability through microbial syntrophy or specialized pathways. Adopting MT to transform thermophilic digesters into mesophilic digesters is feasible and could potentially enhance the further optimization and broader application of practical anaerobic engineering.
KW - Cellular viability
KW - Metagenomic binning
KW - Methane production
KW - Microbial community
KW - Temperature transition
UR - https://www.scopus.com/pages/publications/85196171711
U2 - 10.1016/j.ese.2024.100440
DO - 10.1016/j.ese.2024.100440
M3 - 文章
AN - SCOPUS:85196171711
SN - 2666-4984
VL - 21
JO - Environmental Science and Ecotechnology
JF - Environmental Science and Ecotechnology
M1 - 100440
ER -