Optimal complex task assignment in service crowdsourcing

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

17 Scopus citations

Abstract

Existing schemes cannot assign complex tasks to the most suitable workers because they either cannot measure skills quantitatively or do not consider assigning tasks to workers who are the most suitable but unavailable temporarily. In this paper, we investigate how to realize optimal complex task assignment. Firstly, we formulate the multiple-skill-based task assignment problem in service crowdsourcing. We then propose a weighted multi-skill tree (WMST) to model multiple skills and their correlations. Next, we propose the acceptance expectation to uniformly measure the probabilities that different categories of workers will accept and complete specified tasks. Finally, we propose an acceptance-expectation-based task assignment (AE-TA) algorithm, which reserves tasks for the most suitable workers even unavailable temporarily. Comprehensive experimental results demonstrate that our WMST model and AE-TA algorithm significantly outperform related proposals.

Original languageEnglish
Title of host publicationProceedings of the 29th International Joint Conference on Artificial Intelligence, IJCAI 2020
EditorsChristian Bessiere
PublisherInternational Joint Conferences on Artificial Intelligence
Pages1563-1569
Number of pages7
ISBN (Electronic)9780999241165
StatePublished - 2020
Externally publishedYes
Event29th International Joint Conference on Artificial Intelligence, IJCAI 2020 - Yokohama, Japan
Duration: 1 Jan 2021 → …

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2021-January
ISSN (Print)1045-0823

Conference

Conference29th International Joint Conference on Artificial Intelligence, IJCAI 2020
Country/TerritoryJapan
CityYokohama
Period1/01/21 → …

Fingerprint

Dive into the research topics of 'Optimal complex task assignment in service crowdsourcing'. Together they form a unique fingerprint.

Cite this