On the design of high-performance and energy-efficient probabilistic self-timed systems

Edwin H.M. Sha, Weiwen Jiang, Qingfeng Zhuge, Lei Yang, Xianzhang Chen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

Traditional synchronous systems relied on a global clock to maintain synchronization have incurred problems in worst-case performance and power consumption. A self-timed system that does not depend on a global clock is one of the high-caliber candidates to solve such problems. In this paper, a probabilistic self-timed system model is studied, on which task execution time is represented by a random variable. This paper presents the fundamental properties on time behavior of the probabilistic self-timed system and establishes formulas to calculate its throughput. Then, using the results, efficient algorithms are designed to optimize system throughput and minimize energy consumption. Experimental results show that the throughput of self-timed systems optimized by our algorithms achieves 33.73% improvement compared with that of the optimized synchronous systems. Additionally, the proposed algorithms on minimizing energy can make a good performance-energy tradeoff, achieving 64.36% improvement on energy consumption with little reduction on performance.

Original languageEnglish
Title of host publicationProceedings - 2015 IEEE 17th International Conference on High Performance Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security and 2015 IEEE 12th International Conference on Embedded Software and Systems, HPCC-CSS-ICESS 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages260-265
Number of pages6
ISBN (Electronic)9781479989362
DOIs
StatePublished - 23 Nov 2015
Externally publishedYes
Event17th IEEE International Conference on High Performance Computing and Communications, IEEE 7th International Symposium on Cyberspace Safety and Security and IEEE 12th International Conference on Embedded Software and Systems, HPCC-ICESS-CSS 2015 - New York, United States
Duration: 24 Aug 201526 Aug 2015

Publication series

NameProceedings - 2015 IEEE 17th International Conference on High Performance Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security and 2015 IEEE 12th International Conference on Embedded Software and Systems, HPCC-CSS-ICESS 2015

Conference

Conference17th IEEE International Conference on High Performance Computing and Communications, IEEE 7th International Symposium on Cyberspace Safety and Security and IEEE 12th International Conference on Embedded Software and Systems, HPCC-ICESS-CSS 2015
Country/TerritoryUnited States
CityNew York
Period24/08/1526/08/15

Keywords

  • Energy consumption
  • Probabilistic self-timed system
  • Throughput

Fingerprint

Dive into the research topics of 'On the design of high-performance and energy-efficient probabilistic self-timed systems'. Together they form a unique fingerprint.

Cite this