TY - JOUR
T1 - Novel thermo-sensitive hydrogel system with paclitaxel nanocrystals
T2 - High drug-loading, sustained drug release and extended local retention guaranteeing better efficacy and lower toxicity
AU - Lin, Zhiqiang
AU - Gao, Wei
AU - Hu, Hongxiang
AU - Ma, Kun
AU - He, Bing
AU - Dai, Wenbing
AU - Wang, Xueqing
AU - Wang, Jiancheng
AU - Zhang, Xuan
AU - Zhang, Qiang
PY - 2014/1/28
Y1 - 2014/1/28
N2 - As a sustained-release drug depot for localized cancer treatment, in situ thermo-sensitive hydrogel has attracted increasing interests. However, it is currently a big challenge to achieve high drug-loading, sustained and stable drug release, as well as long-term local drug retention simultaneously. We hypothesized that this goal could be accomplished by incorporating the nanocrystals (NCs) of a hydrophobic drug, such as paclitaxel (PTX) into the thermo-sensitive hydrogel (Gel). Hence, a PTX-NCs-Gel system has been constructed with thermo-sensitive Pluronic F127, using PTX-NCs and Taxol® as the controls. Besides, near infra-red agent DiR was used to prepare PTX/DiR hybrid NCs and PTX/DiR hybrid NCs-Gel as well. As a result, this hydrogel system could achieve a high drug loading of PTX up to 3 mg/ml while stabilize the particle size of PTX-NCs significantly compared with PTX-NCs alone. There was no obvious interaction between PTX-NCs and F127. Obviously, PTX/DiR hybrid NCs-Gel presented better localized retention capacity and a much longer retention time in murine 4T1 tumor than PTX/DiR hybrid NCs and Cremophor/ethanol solubilized DiR in vivo. With a linear elimination, over 10% of PTX still remained inside of mouse 4T1 tumor 20 days after intratumoral dosing of PTX-NCs-Gel. Importantly, PTX-NCs exhibited comparable cytotoxity against 4T1 and MCF-7 cells in vitro compared with Taxol®, which could ensure the efficacy of PTX-NCs-Gel. After intratumoral injection, PTX-NCs-Gel was found to be the most effective among all PTX formulations in the 4T1 and MCF-7 tumor-bearing mice models, with much lower system toxicity than Taxol®. In general, it is believed that the novel thermo-sensitive hydrogel system prepared in this study with PTX-NCs affords high drug-loading, sustained and stable drug release, as well as extended drug retention inside of tumor, which results in better therapy and lower toxicity.
AB - As a sustained-release drug depot for localized cancer treatment, in situ thermo-sensitive hydrogel has attracted increasing interests. However, it is currently a big challenge to achieve high drug-loading, sustained and stable drug release, as well as long-term local drug retention simultaneously. We hypothesized that this goal could be accomplished by incorporating the nanocrystals (NCs) of a hydrophobic drug, such as paclitaxel (PTX) into the thermo-sensitive hydrogel (Gel). Hence, a PTX-NCs-Gel system has been constructed with thermo-sensitive Pluronic F127, using PTX-NCs and Taxol® as the controls. Besides, near infra-red agent DiR was used to prepare PTX/DiR hybrid NCs and PTX/DiR hybrid NCs-Gel as well. As a result, this hydrogel system could achieve a high drug loading of PTX up to 3 mg/ml while stabilize the particle size of PTX-NCs significantly compared with PTX-NCs alone. There was no obvious interaction between PTX-NCs and F127. Obviously, PTX/DiR hybrid NCs-Gel presented better localized retention capacity and a much longer retention time in murine 4T1 tumor than PTX/DiR hybrid NCs and Cremophor/ethanol solubilized DiR in vivo. With a linear elimination, over 10% of PTX still remained inside of mouse 4T1 tumor 20 days after intratumoral dosing of PTX-NCs-Gel. Importantly, PTX-NCs exhibited comparable cytotoxity against 4T1 and MCF-7 cells in vitro compared with Taxol®, which could ensure the efficacy of PTX-NCs-Gel. After intratumoral injection, PTX-NCs-Gel was found to be the most effective among all PTX formulations in the 4T1 and MCF-7 tumor-bearing mice models, with much lower system toxicity than Taxol®. In general, it is believed that the novel thermo-sensitive hydrogel system prepared in this study with PTX-NCs affords high drug-loading, sustained and stable drug release, as well as extended drug retention inside of tumor, which results in better therapy and lower toxicity.
KW - Anti-tumor effect
KW - Drug release
KW - Intratumoral delivery
KW - Nanocrystals
KW - Thermo-sensitive gel
UR - https://www.scopus.com/pages/publications/84890253473
U2 - 10.1016/j.jconrel.2013.10.026
DO - 10.1016/j.jconrel.2013.10.026
M3 - 文章
C2 - 24512789
AN - SCOPUS:84890253473
SN - 0168-3659
VL - 174
SP - 161
EP - 170
JO - Journal of Controlled Release
JF - Journal of Controlled Release
IS - 1
ER -