Noisy derivative-free optimization with value suppression

Hong Wang, Hong Qian, Yang Yu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Scopus citations

Abstract

Derivative-free optimization has shown advantage in solving sophisticated problems such as policy search, when the environment is noise-free. Many real-world environments are noisy, where solution evaluations are inaccurate due to the noise. Noisy evaluation can badly injure derivative-free optimization, as it may make a worse solution looks better. Sampling is a straightforward way to reduce noise, while previous studies have shown that delay the noise handling to the comparison time point (i.e., threshold selection) can be helpful for derivative-free optimization. This work further delays the noise handling, and proposes a simple noise handling mechanism, i.e., value suppression. By value suppression, we do nothing about noise until the best-so-far solution has not been improved for a period, and then suppress the value of the best-so-far solution and continue the optimization. On synthetic problems as well as reinforcement learning tasks, experiments verify that value suppression can be significantly more effective than the previous methods.

Original languageEnglish
Title of host publication32nd AAAI Conference on Artificial Intelligence, AAAI 2018
PublisherAAAI press
Pages1447-1454
Number of pages8
ISBN (Electronic)9781577358008
StatePublished - 2018
Externally publishedYes
Event32nd AAAI Conference on Artificial Intelligence, AAAI 2018 - New Orleans, United States
Duration: 2 Feb 20187 Feb 2018

Publication series

Name32nd AAAI Conference on Artificial Intelligence, AAAI 2018

Conference

Conference32nd AAAI Conference on Artificial Intelligence, AAAI 2018
Country/TerritoryUnited States
CityNew Orleans
Period2/02/187/02/18

Fingerprint

Dive into the research topics of 'Noisy derivative-free optimization with value suppression'. Together they form a unique fingerprint.

Cite this