MultiColor: Image Colorization by Learning from Multiple Color Spaces

Xiangcheng Du, Zhao Zhou, Xingjiao Wu, Yanlong Wang, Zhuoyao Wang, Yingbin Zheng, Cheng Jin

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

Deep networks have shown impressive performance in the image restoration tasks, such as image colorization. However, we find that previous approaches rely on the digital representation from single color model with a specific mapping function, a.k.a., color space, during the colorization pipeline. In this paper, we first investigate the modeling of different color spaces, and find each of them exhibiting distinctive characteristics with unique distribution of colors. The complementarity among multiple color spaces leads to benefits for the image colorization task. We present MultiColor, a new learning-based approach to automatically colorize grayscale images that combines clues from multiple color spaces. Specifically, we employ a set of dedicated colorization modules for individual color space. Within each module, a transformer decoder is first employed to refine color query embeddings and then a color mapper produces color channel prediction using the embeddings and semantic features. With these predicted color channels representing various color spaces, a complementary network is designed to exploit the complementarity and generate pleasing and reasonable colorized images. We conduct extensive experiments on real-world datasets, and the results demonstrate superior performance over the state-of-the-arts.

Original languageEnglish
Title of host publicationMM 2024 - Proceedings of the 32nd ACM International Conference on Multimedia
PublisherAssociation for Computing Machinery, Inc
Pages6784-6792
Number of pages9
ISBN (Electronic)9798400706868
DOIs
StatePublished - 28 Oct 2024
Externally publishedYes
Event32nd ACM International Conference on Multimedia, MM 2024 - Melbourne, Australia
Duration: 28 Oct 20241 Nov 2024

Publication series

NameMM 2024 - Proceedings of the 32nd ACM International Conference on Multimedia

Conference

Conference32nd ACM International Conference on Multimedia, MM 2024
Country/TerritoryAustralia
CityMelbourne
Period28/10/241/11/24

Keywords

  • image colorization
  • multiple color spaces
  • visual transformer

Fingerprint

Dive into the research topics of 'MultiColor: Image Colorization by Learning from Multiple Color Spaces'. Together they form a unique fingerprint.

Cite this