TY - GEN
T1 - Multi-scale Attentional Network for Multi-focal Segmentation of Active Bleed After Pelvic Fractures
AU - Zhou, Yuyin
AU - Dreizin, David
AU - Li, Yingwei
AU - Zhang, Zhishuai
AU - Wang, Yan
AU - Yuille, Alan
N1 - Publisher Copyright:
© 2019, Springer Nature Switzerland AG.
PY - 2019
Y1 - 2019
N2 - Trauma is the worldwide leading cause of death and disability in those younger than 45 years, and pelvic fractures are a major source of morbidity and mortality. Automated segmentation of multiple foci of arterial bleeding from abdominopelvic trauma CT could provide rapid objective measurements of the total extent of active bleeding, potentially augmenting outcome prediction at the point of care, while improving patient triage, allocation of appropriate resources, and time to definitive intervention. In spite of the importance of active bleeding in the quick tempo of trauma care, the task is still quite challenging due to the variable contrast, intensity, location, size, shape, and multiplicity of bleeding foci. Existing work presents a heuristic rule-based segmentation technique which requires multiple stages and cannot be efficiently optimized end-to-end. To this end, we present, Multi-Scale Attentional Network (MSAN), the first yet reliable end-to-end network, for automated segmentation of active hemorrhage from contrast-enhanced trauma CT scans. MSAN consists of the following components: (1) an encoder which fully integrates the global contextual information from holistic 2D slices; (2) a multi-scale strategy applied both in the training stage and the inference stage to handle the challenges induced by variation of target sizes; (3) an attentional module to further refine the deep features, leading to better segmentation quality; and (4) a multi-view mechanism to leverage the 3D information. MSAN reports a significant improvement of more than $$7\%$$ compared to prior arts in terms of DSC.
AB - Trauma is the worldwide leading cause of death and disability in those younger than 45 years, and pelvic fractures are a major source of morbidity and mortality. Automated segmentation of multiple foci of arterial bleeding from abdominopelvic trauma CT could provide rapid objective measurements of the total extent of active bleeding, potentially augmenting outcome prediction at the point of care, while improving patient triage, allocation of appropriate resources, and time to definitive intervention. In spite of the importance of active bleeding in the quick tempo of trauma care, the task is still quite challenging due to the variable contrast, intensity, location, size, shape, and multiplicity of bleeding foci. Existing work presents a heuristic rule-based segmentation technique which requires multiple stages and cannot be efficiently optimized end-to-end. To this end, we present, Multi-Scale Attentional Network (MSAN), the first yet reliable end-to-end network, for automated segmentation of active hemorrhage from contrast-enhanced trauma CT scans. MSAN consists of the following components: (1) an encoder which fully integrates the global contextual information from holistic 2D slices; (2) a multi-scale strategy applied both in the training stage and the inference stage to handle the challenges induced by variation of target sizes; (3) an attentional module to further refine the deep features, leading to better segmentation quality; and (4) a multi-view mechanism to leverage the 3D information. MSAN reports a significant improvement of more than $$7\%$$ compared to prior arts in terms of DSC.
UR - https://www.scopus.com/pages/publications/85075676947
U2 - 10.1007/978-3-030-32692-0_53
DO - 10.1007/978-3-030-32692-0_53
M3 - 会议稿件
AN - SCOPUS:85075676947
SN - 9783030326913
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 461
EP - 469
BT - Machine Learning in Medical Imaging - 10th International Workshop, MLMI 2019, Held in Conjunction with MICCAI 2019, Proceedings
A2 - Suk, Heung-Il
A2 - Liu, Mingxia
A2 - Lian, Chunfeng
A2 - Yan, Pingkun
PB - Springer
T2 - 10th International Workshop on Machine Learning in Medical Imaging, MLMI 2019 held in conjunction with the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
Y2 - 13 October 2019 through 13 October 2019
ER -