Mraea: An efficient and robust entity alignment approach for cross-lingual knowledge graph

Xin Mao, Wenting Wang, Huimin Xu, Man Lan, Yuanbin Wu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

186 Scopus citations

Abstract

Entity alignment to find equivalent entities in cross-lingual Knowledge Graphs (KGs) plays a vital role in automatically integrating multiple KGs. Existing translation-based entity alignment methods jointly model the cross-lingual knowledge and monolingual knowledge into one unified optimization problem. On the other hand, the Graph Neural Network (GNN) based methods either ignore the node differentiations, or represent relation through entity or triple instances. They all fail to model the meta semantics embedded in relation nor complex relations such as n-to-n and multi-graphs. To tackle these challenges, we propose a novel Meta Relation Aware Entity Alignment (MRAEA) to directly model cross-lingual entity embeddings by attending over the node’s incoming and outgoing neighbors and its connected relations’ meta semantics. In addition, we also propose a simple and effective bi-directional iterative strategy to add new aligned seeds during training. Our experiments on all three benchmark entity alignment datasets show that our approach consistently outperforms the state-of-the-art methods, exceeding by 15%-58% on Hit@1. Through an extensive ablation study, we validate that the proposed meta relation aware representations, relation aware self-attention and bi-directional iterative strategy of new seed selection all make contributions to significant performance improvement. The code is available at https://github.com/MaoXinn/MRAEA.

Original languageEnglish
Title of host publicationWSDM 2020 - Proceedings of the 13th International Conference on Web Search and Data Mining
PublisherAssociation for Computing Machinery, Inc
Pages420-428
Number of pages9
ISBN (Electronic)9781450368223
DOIs
StatePublished - 20 Jan 2020
Event13th ACM International Conference on Web Search and Data Mining, WSDM 2020 - Houston, United States
Duration: 3 Feb 20207 Feb 2020

Publication series

NameWSDM 2020 - Proceedings of the 13th International Conference on Web Search and Data Mining

Conference

Conference13th ACM International Conference on Web Search and Data Mining, WSDM 2020
Country/TerritoryUnited States
CityHouston
Period3/02/207/02/20

Keywords

  • Cross-lingual
  • Entity alignment
  • Graph neural network
  • Knowledge graph

Fingerprint

Dive into the research topics of 'Mraea: An efficient and robust entity alignment approach for cross-lingual knowledge graph'. Together they form a unique fingerprint.

Cite this