Abstract
Solar-driven photocatalytic CO2 reduction is an energy-efficient and sustainable strategy to mitigate CO2 levels in the atmosphere. However, efficient and selective conversion of CO2 into multi-carbon products, like C2H4, remains a great challenge due to slow multi-electron-proton transfer and sluggish C–C coupling. Herein, a two-dimensional thin-layered hybrid perovskite is fabricated through filling of oxygen into iodine vacancy in pristine DMASnI3 (DMA = dimethylammonium). The rational-designed DMASnI3(O) induces shrinkage of active sites distance and facilitates dimerization of C–C coupling of intermediates. Upon simulated solar irradiation, the DMASnI3(O) photocatalyst achieves a high selectivity of 74.5%, corresponding to an impressive electron selectivity of 94.6%, for CO2 to C2H4 conversion and an effective C2H4 yield of 11.2 μmol g−1 h−1. In addition, the DMASnI3(O) inherits excellent water stability and implements long-term photocatalytic CO2 reduction to C2H4 in a water medium. This work establishes a unique paradigm to convert CO2 to C2+ hydrocarbons in a perovskite-based photocatalytic system.
| Original language | English |
|---|---|
| Article number | e2318970121 |
| Journal | Proceedings of the National Academy of Sciences of the United States of America |
| Volume | 121 |
| Issue number | 7 |
| DOIs | |
| State | Published - 2024 |
Keywords
- CO
- ethylene
- perovskite
- photocatalysis