Model Uncertainty in Evolutionary Optimization and Bayesian Optimization: A Comparative Analysis

Hao Hao, Xiaoqun Zhang, Aimin Zhou

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Black-box optimization problems, which are common in many real-world applications, require optimization through input-output interactions without access to internal workings. This often leads to significant computational resources being consumed for simulations. Bayesian Optimization (BO) and Surrogate-Assisted Evolutionary Algorithm (SAEA) are two widely used gradient-free optimization techniques employed to address such challenges. Both approaches follow a similar iterative procedure that relies on surrogate models to guide the search process. This paper aims to elucidate the similarities and differences in the utilization of model uncertainty between these two methods, as well as the impact of model inaccuracies on algorithmic performance. A novel model-assisted strategy is introduced, which utilizes unevaluated solutions to generate offspring, leveraging the population-based search capabilities of evolutionary algorithm to enhance the effectiveness of model-assisted optimization. Experimental results demonstrate that the proposed approach outperforms mainstream Bayesian optimization algorithms in terms of accuracy and efficiency.

Original languageEnglish
Title of host publication2024 IEEE Congress on Evolutionary Computation, CEC 2024 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350308365
DOIs
StatePublished - 2024
Event13th IEEE Congress on Evolutionary Computation, CEC 2024 - Yokohama, Japan
Duration: 30 Jun 20245 Jul 2024

Publication series

Name2024 IEEE Congress on Evolutionary Computation, CEC 2024 - Proceedings

Conference

Conference13th IEEE Congress on Evolutionary Computation, CEC 2024
Country/TerritoryJapan
CityYokohama
Period30/06/245/07/24

Keywords

  • Bayesian Optimization
  • Black-box optimization
  • Model Uncertainty
  • Surrogate-Assisted Evo-lutionary Algorithm

Fingerprint

Dive into the research topics of 'Model Uncertainty in Evolutionary Optimization and Bayesian Optimization: A Comparative Analysis'. Together they form a unique fingerprint.

Cite this