Mid-Infrared Single-Photon Computational Temporal Ghost Imaging

Wen Zhang, Kun Huang, Xu Wang, Ben Sun, Jianan Fang, Yijing Li, Heping Zeng

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

The capture of transient optical waveforms is critical to reveal dynamical phenomena in various fields. However, fast and sensitive mid-infrared (MIR) measurements are typically limited by processing bandwidth and detection sensitivity of conventional infrared detectors. Here, a computational temporal ghost imaging system is proposed and implemented, which favors high-speed and high-sensitivity characterization of MIR temporal objects. The core process relies on high-fidelity nonlinear optical transduction for facilitating both the programmable structured illumination and frequency upconversion detection based on the high-performance near-infrared light modulator and detector, respectively. Consequently, the correlation between the recorded integral upconversion intensity and the designated encoding patterns allows one to reconstruct the MIR profiles with a temporal resolution of 80 ps, well beyond the intrinsic bandwidth or timing jitter of the involved detectors. Moreover, a high detection sensitivity is manifested by recovering single-photon MIR waveforms with an incident flux below 0.1 photons/bit. Additionally, faithful reconstructions at sub-Nyquist sampling rates are demonstrated using the compressive sensing algorithm, which can reduce the data acquisition time by over 90%. The presented paradigm features high timing precision, single-photon sensitivity, and efficient data sampling, which can be extended into far-infrared or terahertz regions to address pressing demands in fast and sensitive sensing.

Original languageEnglish
Article number2402180
JournalLaser and Photonics Reviews
Volume19
Issue number11
DOIs
StatePublished - 5 Jun 2025

Keywords

  • compressive sensing measurement
  • frequency upconversion detection
  • mid-infrared detection
  • single-photon detection
  • temporal ghost imaging

Fingerprint

Dive into the research topics of 'Mid-Infrared Single-Photon Computational Temporal Ghost Imaging'. Together they form a unique fingerprint.

Cite this