Memory-Friendly Scalable Super-Resolution via Rewinding Lottery Ticket Hypothesis

Jin Lin, Xiaotong Luo, Ming Hong, Yanyun Qu, Yuan Xie, Zongze Wu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

12 Scopus citations

Abstract

Scalable deep Super-Resolution (SR) models are increasingly in demand, whose memory can be customized and tuned to the computational recourse of the platform. The existing dynamic scalable SR methods are not memory-friendly enough because multi-scale models have to be saved with a fixed size for each model. Inspired by the success of Lottery Tickets Hypothesis (LTH) on image classification, we explore the existence of unstructured scalable SR deep models, that is, we find gradual shrinkage subnetworks of extreme sparsity named winning tickets. In this paper, we propose a Memory-friendly Scalable SR framework (MSSR). The advantage is that only a single scalable model covers multiple SR models with different sizes, instead of reloading SR models of different sizes. Concretely, MSSR consists of the forward and backward stages, the former for model compression and the latter for model expansion. In the forward stage, we take advantage of LTH with rewinding weights to progressively shrink the SR model and the pruning-out masks that form nested sets. Moreover, stochastic self-distillation (SSD) is conducted to boost the performance of sub-networks. By stochastically selecting multiple depths, the current model inputs the selected features into the corresponding parts in the larger model and improves the performance of the current model based on the feedback results of the larger model. In the backward stage, the smaller SR model could be expanded by recovering and fine-tuning the pruned parameters according to the pruning-out masks obtained in the forward. Extensive experiments show the effectiveness of MMSR. The smallest-scale sub-network could achieve the sparsity of 94% and outperforms the compared lightweight SR methods.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
PublisherIEEE Computer Society
Pages14398-14407
Number of pages10
ISBN (Electronic)9798350301298
ISBN (Print)9798350301298
DOIs
StatePublished - 2023
Event2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 - Vancouver, Canada
Duration: 18 Jun 202322 Jun 2023

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2023-June
ISSN (Print)1063-6919

Conference

Conference2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
Country/TerritoryCanada
CityVancouver
Period18/06/2322/06/23

Keywords

  • Efficient and scalable vision

Fingerprint

Dive into the research topics of 'Memory-Friendly Scalable Super-Resolution via Rewinding Lottery Ticket Hypothesis'. Together they form a unique fingerprint.

Cite this