Mechanistic study on the side arm effect in a palladium/Xu-Phos-catalyzed enantioselective alkoxyalkenylation of γ-hydroxyalkenes

Shuai Zhu, Zihao Ye, Ming Jie Chen, Lei Wang, Yu Zhuo Wang, Ke Nan Zhang, Wen Bo Li, Han Ming Ding, Zhiming Li, Junliang Zhang

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Recently, the asymmetric bifunctionalization of alkenes has received much attention. However, the development of enantioselective alkoxyalkenylation has posed a considerable challenge and has lagged largely behind. Herein, we report a new palladium-catalyzed enantioselective alkoxyalkenylation reaction, using a range of primary, secondary, and tertiary γ-hydroxy-alkenes with alkenyl halides. By employing newly identified Xu-Phos (Xu8 and Xu9) with a suitable side-arm adjacent to the PCy2 motif, a series of allyl-substituted tetrahydrofurans were obtained in good yields with up to 95% ee. Besides (E)-alkenyl halides, (Z)-alkenyl halide was also examined and provided the corresponding (Z)-product as a single diastereomer, supporting a stereospecific oxidative addition and reductive elimination step. Moreover, deuterium labeling and VCD experiments were employed to determine a cis-oxypalladation mechanism. DFT calculations helped us gain deeper insight into the side-arm effect on the chiral ligand. Finally, the practicability of this method is further demonstrated through a gram-scale synthesis and versatile transformations of the products.

Original languageEnglish
Article number7611
JournalNature Communications
Volume14
Issue number1
DOIs
StatePublished - Dec 2023

Fingerprint

Dive into the research topics of 'Mechanistic study on the side arm effect in a palladium/Xu-Phos-catalyzed enantioselective alkoxyalkenylation of γ-hydroxyalkenes'. Together they form a unique fingerprint.

Cite this