Mechanism Design with Predictions

Chenyang Xu, Pinyan Lu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

24 Scopus citations

Abstract

Improving algorithms via predictions is a very active research topic in recent years. This paper initiates the systematic study of mechanism design in this model. In a number of well-studied mechanism design settings, we make use of imperfect predictions to design mechanisms that perform much better than traditional mechanisms if the predictions are accurate (consistency), while always retaining worst-case guarantees even with very imprecise predictions (robustness). Furthermore, we refer to the largest prediction error sufficient to give a good performance as the error tolerance of a mechanism, and observe that an intrinsic tradeoff among consistency, robustness and error tolerance is common for mechanism design with predictions.

Original languageEnglish
Title of host publicationProceedings of the 31st International Joint Conference on Artificial Intelligence, IJCAI 2022
EditorsLuc De Raedt, Luc De Raedt
PublisherInternational Joint Conferences on Artificial Intelligence
Pages571-577
Number of pages7
ISBN (Electronic)9781956792003
DOIs
StatePublished - 2022
Externally publishedYes
Event31st International Joint Conference on Artificial Intelligence, IJCAI 2022 - Vienna, Austria
Duration: 23 Jul 202229 Jul 2022

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
ISSN (Print)1045-0823

Conference

Conference31st International Joint Conference on Artificial Intelligence, IJCAI 2022
Country/TerritoryAustria
CityVienna
Period23/07/2229/07/22

Fingerprint

Dive into the research topics of 'Mechanism Design with Predictions'. Together they form a unique fingerprint.

Cite this