TY - JOUR
T1 - Mapping multiple water pollutants across China using the grey water footprint
AU - Feng, Haoyuan
AU - Sun, Fengyun
AU - Liu, Yaoyi
AU - Zeng, Peng
AU - Deng, Lingzhi
AU - Che, Yue
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2021/9/1
Y1 - 2021/9/1
N2 - The primary pollutants and pollution levels of surface water present spatial and temporal changes. This study quantified the grey water footprint (GWF) and surface water pollution level (WPL) in China from 2003 to 2018 based on four pollutants: chemical oxygen demand (COD), ammonia nitrogen (NH3-N), total nitrogen (TN) and total phosphorus (TP). Additionally, the spatiotemporal distribution of the primary water pollutant (PWP) and driving forces of the GWF were analyzed based on the WPLs and the logarithmic mean Divisia index (LMDI) decomposition method. The results showed that the GWF in China decreased by 13% from 2003 to 2018 and the WPL decreased from 1.11 in 2003 to 0.94 in 2018. An analysis of regional GWFs with multiple pollutants could prevent the underestimation of GWFs and WPLs caused by changes in the PWPs. The GWF spatial distribution was high in the southeast and low in the northwest, while the provinces with larger WPLs were mainly concentrated in northern China. The PWP changed from COD to TN in 2007 because of the increase in nitrogen application in China, the low TN reduction capacity of wastewater treatment plants and the improved comprehensive utilization rate of livestock and poultry manure. The driving force analysis results showed that water efficiency and technological and industrial structural effects promoted the reduced GWF. Our research conclusions and policy suggestions could provide references for reducing the GWF and improving the water quality in China.
AB - The primary pollutants and pollution levels of surface water present spatial and temporal changes. This study quantified the grey water footprint (GWF) and surface water pollution level (WPL) in China from 2003 to 2018 based on four pollutants: chemical oxygen demand (COD), ammonia nitrogen (NH3-N), total nitrogen (TN) and total phosphorus (TP). Additionally, the spatiotemporal distribution of the primary water pollutant (PWP) and driving forces of the GWF were analyzed based on the WPLs and the logarithmic mean Divisia index (LMDI) decomposition method. The results showed that the GWF in China decreased by 13% from 2003 to 2018 and the WPL decreased from 1.11 in 2003 to 0.94 in 2018. An analysis of regional GWFs with multiple pollutants could prevent the underestimation of GWFs and WPLs caused by changes in the PWPs. The GWF spatial distribution was high in the southeast and low in the northwest, while the provinces with larger WPLs were mainly concentrated in northern China. The PWP changed from COD to TN in 2007 because of the increase in nitrogen application in China, the low TN reduction capacity of wastewater treatment plants and the improved comprehensive utilization rate of livestock and poultry manure. The driving force analysis results showed that water efficiency and technological and industrial structural effects promoted the reduced GWF. Our research conclusions and policy suggestions could provide references for reducing the GWF and improving the water quality in China.
KW - Driving forces
KW - Grey water footprint
KW - Primary water pollutant
KW - Spatiotemporal variation
UR - https://www.scopus.com/pages/publications/85107694396
U2 - 10.1016/j.scitotenv.2021.147255
DO - 10.1016/j.scitotenv.2021.147255
M3 - 文章
C2 - 33933768
AN - SCOPUS:85107694396
SN - 0048-9697
VL - 785
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 147255
ER -