MagicNet: Semi-Supervised Multi-Organ Segmentation via Magic-Cube Partition and Recovery

Duowen Chen, Yunhao Bai, Wei Shen, Qingli Li, Lequan Yu, Yan Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

41 Scopus citations

Abstract

We propose a novel teacher-student model for semi-supervised multi-organ segmentation. In teacher-student model, data augmentation is usually adopted on unlabeled data to regularize the consistent training between teacher and student. We start from a key perspective that fixed relative locationsand variable sizes of different organs can provide distribution information where a multi-organ CT scan is drawn. Thus, we treat the prior anatomy as a strong tool to guide the data augmentation and reduce the mismatch between labeled and unlabeled images for semi-supervised learning. More specifically, we propose a data augmentation strategy based on partition-and-recovery N3 cubes cross-and within-labeled and unlabeled images. Our strategy encourages unlabeled images to learn organ semantics in relative locations from the labeled images (cross-branch) and enhances the learning ability for small organs (within-branch). For within-branch, we further propose to refine the quality of pseudo labels by blending the learned representations from small cubes to incorporate local attributes. Our method is termed as MagicNet, since it treats the CT volume as a magic-cube and N3-cube partition-and-recovery process matches with the rule of playing a magic-cube. Extensive experiments on two public CT multi-organ datasets demonstrate the effectiveness of MagicNet, and noticeably outperforms state-of-the-art semi-supervised medical image segmentation approaches, with + 7% DSC improvement on MACT dataset with 10% labeled images. Code is avaiable at https://github.com/DeepMed-Lab-ECNU/MagicNet.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
PublisherIEEE Computer Society
Pages23869-23878
Number of pages10
ISBN (Electronic)9798350301298
DOIs
StatePublished - 2023
Event2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 - Vancouver, Canada
Duration: 18 Jun 202322 Jun 2023

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2023-June
ISSN (Print)1063-6919

Conference

Conference2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
Country/TerritoryCanada
CityVancouver
Period18/06/2322/06/23

Keywords

  • Medical and biological vision
  • cell microscopy

Fingerprint

Dive into the research topics of 'MagicNet: Semi-Supervised Multi-Organ Segmentation via Magic-Cube Partition and Recovery'. Together they form a unique fingerprint.

Cite this