Low-Shot multi-label incremental learning for thoracic diseases diagnosis

Qingfeng Wang, Jie Zhi Cheng, Ying Zhou, Hang Zhuang, Changlong Li, Bo Chen, Zhiqin Liu, Jun Huang, Chao Wang, Xuehai Zhou

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

Despite promising results of 14 types of diseases continuously reported on the large-scale NIH dataset, the applicability on real clinical practice with the deep learning based CADx for chest X-ray may still be quite elusive. It is because tens of diseases can be found in the chest X-ray and require to keep on learning and diagnosis. In this paper, we propose a low-shot multi-label incremental learning framework involving three phases, i.e., representation learning, low-shot learning and all-label fine-tuning phase, to demonstrate the feasibility and practicality of thoracic disease abnormalities of CADx in clinic. To facilitate the incremental learning in new small dataset situation, we also formulate a feature regularization prior, say multi-label squared gradient magnitude (MLSGM) to ensure the generalization capability of the deep learning model. The proposed approach has been evaluated on the public ChestX-ray14 dataset covering 14 types of basic abnormalities and a new small dataset MyX-ray including 6 types of novel abnormalities collected from Mianyang Central Hospital. The experimental result shows MLSGM method improves the average Area-Under-Curve (AUC) score on 6 types of novel abnormalities up to 7.6 points above the baseline when shot number is only 10. With the low-shot multi-label incremental learning framework, the AI application for the reading and diagnosis of chest X-ray over-all diseases and abnormalities can be possibly realized in clinic practice.

Original languageEnglish
Title of host publicationNeural Information Processing - 25th International Conference, ICONIP 2018, Proceedings
EditorsLong Cheng, Andrew Chi Sing Leung, Seiichi Ozawa
PublisherSpringer Verlag
Pages420-432
Number of pages13
ISBN (Print)9783030042387
DOIs
StatePublished - 2018
Externally publishedYes
Event25th International Conference on Neural Information Processing, ICONIP 2018 - Siem Reap, Cambodia
Duration: 13 Dec 201816 Dec 2018

Publication series

NameLecture Notes in Computer Science
Volume11307 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference25th International Conference on Neural Information Processing, ICONIP 2018
Country/TerritoryCambodia
CitySiem Reap
Period13/12/1816/12/18

Keywords

  • Chest X-ray
  • Incremental learning
  • Low-shot learning
  • Multi-label learning
  • Thoracic diseases diagnosis

Fingerprint

Dive into the research topics of 'Low-Shot multi-label incremental learning for thoracic diseases diagnosis'. Together they form a unique fingerprint.

Cite this