TY - GEN
T1 - Location and time aware social collaborative retrieval for new successive point-of-interest recommendation
AU - Zhang, Wei
AU - Wang, Jianyong
N1 - Publisher Copyright:
© 2015 ACM.
PY - 2015/10/17
Y1 - 2015/10/17
N2 - In location-based social networks (LBSNs), new successive point-of-interest (POI) recommendation is a newly formulated task which tries to regard the POI a user currently visits as his POI-related query and recommend new POIs the user has not visited before. While carefully designed methods are proposed to solve this problem, they ignore the essence of the task which involves retrieval and recommendation problem simultaneously and fail to employ the social relations or temporal information adequately to improve the results. In order to solve this problem, we propose a new model called location and time aware social collaborative retrieval model (LTSCR), which has two distinct advantages: (1) it models the location, time, and social information simultaneously for the successive POI recommendation task; (2) it efficiently utilizes the merits of the collaborative retrieval model which leverages weighted approximately ranked pair-wise (WARP) loss for achieving better top-n ranking results, just as the new successive POI recommendation task needs. We conducted some comprehensive experiments on publicly available datasets and demonstrate the power of the proposed method, with 46.6% growth in Precision@5 and 47.3% improvement in Recall@5 over the best previous method.
AB - In location-based social networks (LBSNs), new successive point-of-interest (POI) recommendation is a newly formulated task which tries to regard the POI a user currently visits as his POI-related query and recommend new POIs the user has not visited before. While carefully designed methods are proposed to solve this problem, they ignore the essence of the task which involves retrieval and recommendation problem simultaneously and fail to employ the social relations or temporal information adequately to improve the results. In order to solve this problem, we propose a new model called location and time aware social collaborative retrieval model (LTSCR), which has two distinct advantages: (1) it models the location, time, and social information simultaneously for the successive POI recommendation task; (2) it efficiently utilizes the merits of the collaborative retrieval model which leverages weighted approximately ranked pair-wise (WARP) loss for achieving better top-n ranking results, just as the new successive POI recommendation task needs. We conducted some comprehensive experiments on publicly available datasets and demonstrate the power of the proposed method, with 46.6% growth in Precision@5 and 47.3% improvement in Recall@5 over the best previous method.
KW - Collaborative retrieval
KW - Location based social networks
KW - Successive location recommendation
UR - https://www.scopus.com/pages/publications/84958234499
U2 - 10.1145/2806416.2806564
DO - 10.1145/2806416.2806564
M3 - 会议稿件
AN - SCOPUS:84958234499
T3 - International Conference on Information and Knowledge Management, Proceedings
SP - 1221
EP - 1230
BT - CIKM 2015 - Proceedings of the 24th ACM International Conference on Information and Knowledge Management
PB - Association for Computing Machinery
T2 - 24th ACM International Conference on Information and Knowledge Management, CIKM 2015
Y2 - 19 October 2015 through 23 October 2015
ER -