Abstract
Herein, the method of spectrum-encoded dual-comb interferometry is introduced to measure a three-dimensional (3-D) profile with absolute distance information. By combining spectral encoding for wavelength-to-space mapping, dual-comb interferometry for decoding and optical reference for calibration, this system can obtain a 3-D profile of an object at a stand-off distance of 114 mm with a depth precision of 12 μm. With the help of the reference arm, the absolute distance, reflectivity distribution, and depth information are simultaneously measured at a 5 kHz line-scan rate with free-running carrier-envelope offset frequencies. To verify the concept, experiments are conducted with multiple objects, including a resolution test chart, a three-stair structure, and a designed “ECNU” letter chain. The results show a horizontal resolution of ∼22 μm and a measurement range of 1.93 mm.
| Original language | English |
|---|---|
| Pages (from-to) | 1606-1609 |
| Number of pages | 4 |
| Journal | Optics Letters |
| Volume | 43 |
| Issue number | 7 |
| DOIs | |
| State | Published - 1 Apr 2018 |