TY - GEN
T1 - Lighter is Better
T2 - 27th European Symposium on Research in Computer Security, ESORICS 2022
AU - Wang, Xingkai
AU - Cao, Zhenfu
AU - Liu, Zhen
AU - Liang, Kaitai
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2022
Y1 - 2022
N2 - Gordon et al. (TCC 2015) systematically studied the security of Multi-client Verifiable Computation (MVC), in which a set of computationally-weak clients outsource the computation of a general function f over their private inputs to an untrusted server. They introduced the universally composable (UC) security of MVC and proposed a scheme achieving UC-security, where the protocol remains secure after arbitrarily composed with other UC-secure instances. However, the clients in their scheme have to undertake the heavy computation overhead caused by fully homomorphic encryption (FHE) and further, the plaintext size is linear to the function input size. In this work, we propose a more efficient UC-secure multi-client privacy-preserving verifiable computation protocol, called MVOC, that sharply reduces amortized overheads for clients, in both semi-honest and malicious settings. In particular, our protocol achieves stronger outsourcability by outsourcing more computation to the server, so that it may be more friendly to those lightweight clients. More specifically, we revisit the definition of garbling scheme, and propose a novel garbled circuit protocol whose circuit randomness is non-interactively provided by multiple parties. We also realize the idea of hybrid homomorphic encryption, which makes the FHE plaintext size independent of the input size. We present the detailed proof and analyze the theoretical complexity of MVOC. We further implement our protocol and evaluate the performance, and the results show that, after adopting our new techniques, the computation and communication overheads during input phase can be decreased by 55.15%–68.05% and 62.55%–75% respectively.
AB - Gordon et al. (TCC 2015) systematically studied the security of Multi-client Verifiable Computation (MVC), in which a set of computationally-weak clients outsource the computation of a general function f over their private inputs to an untrusted server. They introduced the universally composable (UC) security of MVC and proposed a scheme achieving UC-security, where the protocol remains secure after arbitrarily composed with other UC-secure instances. However, the clients in their scheme have to undertake the heavy computation overhead caused by fully homomorphic encryption (FHE) and further, the plaintext size is linear to the function input size. In this work, we propose a more efficient UC-secure multi-client privacy-preserving verifiable computation protocol, called MVOC, that sharply reduces amortized overheads for clients, in both semi-honest and malicious settings. In particular, our protocol achieves stronger outsourcability by outsourcing more computation to the server, so that it may be more friendly to those lightweight clients. More specifically, we revisit the definition of garbling scheme, and propose a novel garbled circuit protocol whose circuit randomness is non-interactively provided by multiple parties. We also realize the idea of hybrid homomorphic encryption, which makes the FHE plaintext size independent of the input size. We present the detailed proof and analyze the theoretical complexity of MVOC. We further implement our protocol and evaluate the performance, and the results show that, after adopting our new techniques, the computation and communication overheads during input phase can be decreased by 55.15%–68.05% and 62.55%–75% respectively.
KW - Hybrid homomorphic encryption
KW - Outsourced computation
KW - Verifiable computation
UR - https://www.scopus.com/pages/publications/85140784898
U2 - 10.1007/978-3-031-17146-8_6
DO - 10.1007/978-3-031-17146-8_6
M3 - 会议稿件
AN - SCOPUS:85140784898
SN - 9783031171451
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 105
EP - 125
BT - Computer Security – ESORICS 2022 - 27th European Symposium on Research in Computer Security, Proceedings
A2 - Atluri, Vijayalakshmi
A2 - Di Pietro, Roberto
A2 - Jensen, Christian D.
A2 - Meng, Weizhi
PB - Springer Science and Business Media Deutschland GmbH
Y2 - 26 September 2022 through 30 September 2022
ER -