TY - GEN
T1 - Let's Rectify Step by Step
T2 - Joint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024
AU - Liu, Shunyu
AU - Zhou, Jie
AU - Zhu, Qunxi
AU - Chen, Qin
AU - Bai, Qingchun
AU - Xiao, Jun
AU - He, Liang
N1 - Publisher Copyright:
© 2024 ELRA Language Resource Association: CC BY-NC 4.0.
PY - 2024
Y1 - 2024
N2 - Aspect-Based Sentiment Analysis (ABSA) stands as a crucial task in predicting the sentiment polarity associated with identified aspects within text. However, a notable challenge in ABSA lies in precisely determining the aspects' boundaries (start and end indices), especially for long ones, due to users' colloquial expressions. We propose DiffusionABSA, a novel diffusion model tailored for ABSA, which extracts the aspects progressively step by step. Particularly, DiffusionABSA gradually adds noise to the aspect terms in the training process, subsequently learning a denoising process that progressively restores these terms in a reverse manner. To estimate the boundaries, we design a denoising neural network enhanced by a syntax-aware temporal attention mechanism to chronologically capture the interplay between aspects and surrounding text. Empirical evaluations conducted on eight benchmark datasets underscore the compelling advantages offered by DiffusionABSA when compared against robust baseline models. Our code is publicly available at https://github.com/Qlb6x/DiffusionABSA.
AB - Aspect-Based Sentiment Analysis (ABSA) stands as a crucial task in predicting the sentiment polarity associated with identified aspects within text. However, a notable challenge in ABSA lies in precisely determining the aspects' boundaries (start and end indices), especially for long ones, due to users' colloquial expressions. We propose DiffusionABSA, a novel diffusion model tailored for ABSA, which extracts the aspects progressively step by step. Particularly, DiffusionABSA gradually adds noise to the aspect terms in the training process, subsequently learning a denoising process that progressively restores these terms in a reverse manner. To estimate the boundaries, we design a denoising neural network enhanced by a syntax-aware temporal attention mechanism to chronologically capture the interplay between aspects and surrounding text. Empirical evaluations conducted on eight benchmark datasets underscore the compelling advantages offered by DiffusionABSA when compared against robust baseline models. Our code is publicly available at https://github.com/Qlb6x/DiffusionABSA.
KW - Aspect-based Sentiment Analysis
KW - Diffusion Models
KW - Syntax
UR - https://www.scopus.com/pages/publications/85195895847
M3 - 会议稿件
AN - SCOPUS:85195895847
T3 - 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings
SP - 10324
EP - 10335
BT - 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings
A2 - Calzolari, Nicoletta
A2 - Kan, Min-Yen
A2 - Hoste, Veronique
A2 - Lenci, Alessandro
A2 - Sakti, Sakriani
A2 - Xue, Nianwen
PB - European Language Resources Association (ELRA)
Y2 - 20 May 2024 through 25 May 2024
ER -