Learning Pseudo-Contractive Denoisers for Inverse Problems

Deliang Wei, Peng Chen, Fang Li

Research output: Contribution to journalConference articlepeer-review

3 Scopus citations

Abstract

Deep denoisers have shown excellent performance in solving inverse problems in signal and image processing. In order to guarantee the convergence, the denoiser needs to satisfy some Lipschitz conditions like non-expansiveness. However, enforcing such constraints inevitably compromises recovery performance. This paper introduces a novel training strategy that enforces a weaker constraint on the deep denoiser called pseudo-contractiveness. By studying the spectrum of the Jacobian matrix, relationships between different denoiser assumptions are revealed. Effective algorithms based on gradient descent and Ishikawa process are derived, and further assumptions of strict pseudo-contractiveness yield efficient algorithms using half-quadratic splitting and forward-backward splitting. The proposed algorithms theoretically converge strongly to a fixed point. A training strategy based on holomorphic transformation and functional calculi is proposed to enforce the pseudo-contractive denoiser assumption. Extensive experiments demonstrate superior performance of the pseudo-contractive denoiser compared to related denoisers. The proposed methods are competitive in terms of visual effects and quantitative values.

Original languageEnglish
Pages (from-to)52500-52524
Number of pages25
JournalProceedings of Machine Learning Research
Volume235
StatePublished - 2024
Event41st International Conference on Machine Learning, ICML 2024 - Vienna, Austria
Duration: 21 Jul 202427 Jul 2024

Fingerprint

Dive into the research topics of 'Learning Pseudo-Contractive Denoisers for Inverse Problems'. Together they form a unique fingerprint.

Cite this