Learning Knowledge-Enhanced Contextual Language Representations for Domain Natural Language Understanding

Taolin Zhang, Ruyao Xu, Chengyu Wang, Zhongjie Duan, Cen Chen, Minghui Qiu, Dawei Cheng, Xiaofeng He, Weining Qian

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

Knowledge-Enhanced Pre-trained Language Models (KEPLMs) improve the performance of various downstream NLP tasks by injecting knowledge facts from large-scale Knowledge Graphs (KGs). However, existing methods for pre-training KEPLMs with relational triples are difficult to be adapted to close domains due to the lack of sufficient domain graph semantics. In this paper, we propose a Knowledgeenhanced lANGuAge Representation learning framework for various clOsed dOmains (KANGAROO) via capturing the implicit graph structure among the entities. Specifically, since the entity coverage rates of closed-domain KGs can be relatively low and may exhibit the global sparsity phenomenon for knowledge injection, we consider not only the shallow relational representations of triples but also the hyperbolic embeddings of deep hierarchical entity-class structures for effective knowledge fusion. Moreover, as two closed-domain entities under the same entity-class often have locally dense neighbor subgraphs counted by max point biconnected component, we further propose a data augmentation strategy based on contrastive learning over subgraphs to construct hard negative samples of higher quality. It makes the underlying KELPMs better distinguish the semantics of these neighboring entities to further complement the global semantic sparsity. In the experiments, we evaluate KANGAROO over various knowledge-aware and general NLP tasks in both full and few-shot learning settings, outperforming various KEPLM training paradigms performance in closed-domains significantly..

Original languageEnglish
Title of host publicationEMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings
EditorsHouda Bouamor, Juan Pino, Kalika Bali
PublisherAssociation for Computational Linguistics (ACL)
Pages15663-15676
Number of pages14
ISBN (Electronic)9798891760608
DOIs
StatePublished - 2023
Event2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023 - Hybrid, Singapore, Singapore
Duration: 6 Dec 202310 Dec 2023

Publication series

NameEMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings

Conference

Conference2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023
Country/TerritorySingapore
CityHybrid, Singapore
Period6/12/2310/12/23

Fingerprint

Dive into the research topics of 'Learning Knowledge-Enhanced Contextual Language Representations for Domain Natural Language Understanding'. Together they form a unique fingerprint.

Cite this