Learning-Augmented Algorithms for Online Steiner Tree

Chenyang Xu, Benjamin Moseley

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

10 Scopus citations

Abstract

This paper considers the recently popular beyond-worst-case algorithm analysis model which integrates machine-learned predictions with online algorithm design. We consider the online Steiner tree problem in this model for both directed and undirected graphs. Steiner tree is known to have strong lower bounds in the online setting and any algorithm’s worst-case guarantee is far from desirable. This paper considers algorithms that predict which terminal arrives online. The predictions may be incorrect and the algorithms’ performance is parameterized by the number of incorrectly predicted terminals. These guarantees ensure that algorithms break through the online lower bounds with good predictions and the competitive ratio gracefully degrades as the prediction error grows. We then observe that the theory is predictive of what will occur empirically. We show on graphs where terminals are drawn from a distribution, the new online algorithms have strong performance even with modestly correct predictions.

Original languageEnglish
Title of host publicationAAAI-22 Technical Tracks 8
PublisherAssociation for the Advancement of Artificial Intelligence
Pages8744-8752
Number of pages9
ISBN (Electronic)1577358767, 9781577358763
DOIs
StatePublished - 30 Jun 2022
Externally publishedYes
Event36th AAAI Conference on Artificial Intelligence, AAAI 2022 - Virtual, Online
Duration: 22 Feb 20221 Mar 2022

Publication series

NameProceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022
Volume36

Conference

Conference36th AAAI Conference on Artificial Intelligence, AAAI 2022
CityVirtual, Online
Period22/02/221/03/22

Fingerprint

Dive into the research topics of 'Learning-Augmented Algorithms for Online Steiner Tree'. Together they form a unique fingerprint.

Cite this