Knowledge Memory Based LSTM Model for Answer Selection

Weijie An, Qin Chen, Yan Yang, Liang He

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Recurrent neural networks (RNN) have shown great success in answer selection task in recent years. Although the attention mechanism has been widely used to enhance the information interaction between questions and answers, knowledge is still the gap between their representations. In this paper, we propose a knowledge memory based RNN model, which incorporates the knowledge learned from the data sets into the question representations. Experiments on two benchmark data sets show the great advantages of our proposed model over that without the knowledge memory. Furthermore, our model outperforms most of the recent progress in question answering.

Original languageEnglish
Title of host publicationNeural Information Processing - 24th International Conference, ICONIP 2017, Proceedings
EditorsDongbin Zhao, El-Sayed M. El-Alfy, Derong Liu, Shengli Xie, Yuanqing Li
PublisherSpringer Verlag
Pages34-42
Number of pages9
ISBN (Print)9783319700953
DOIs
StatePublished - 2017
Event24th International Conference on Neural Information Processing, ICONIP 2017 - Guangzhou, China
Duration: 14 Nov 201718 Nov 2017

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10635 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference24th International Conference on Neural Information Processing, ICONIP 2017
Country/TerritoryChina
CityGuangzhou
Period14/11/1718/11/17

Keywords

  • Answer selection
  • Deep learning
  • Knowledge memory

Fingerprint

Dive into the research topics of 'Knowledge Memory Based LSTM Model for Answer Selection'. Together they form a unique fingerprint.

Cite this