TY - GEN
T1 - Knowledge-aware deep dual networks for text-based mortality prediction
AU - Liu, Ning
AU - Lu, Pan
AU - Zhang, Wei
AU - Wang, Jianyong
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/4
Y1 - 2019/4
N2 - Mortality prediction is one of the essential tasks in medical data mining and is significant for inferring clinical outcomes. With a large number of medical notes collected from hospitals, there is an urgent need for developing effective models for predicting mortality based on them. In contrast to structured electronic health records, medical notes are unstructured texts written by experienced caregivers and contain more complicated information about patients, posing more challenges for modeling. Most previous studies rely on tedious hand-crafted features or generating indirect features based on some statistical models such as topic modeling, which might incur information loss for later model training. Recently, some deep models have been proposed to unify the stages of feature construction and model training. However, domain concept knowledge has been neglected, which is important to gain a better understanding of medical notes. To address the above issues, we propose novel Knowledge-aware Deep Dual Networks (K-DDN) for the text-based mortality prediction task. Specifically, a simple deep dual network is first proposed to fuse the representations of medical knowledge and raw text for prediction. Afterward, we incorporate a co-attention mechanism into the basic model, guiding the knowledge and text representation learning with the help of each other. Experimental results on two publicly real-world datasets show the proposed deep dual networks outperform state-of-the-art methods and the co-attention mechanism can further improve the performance.
AB - Mortality prediction is one of the essential tasks in medical data mining and is significant for inferring clinical outcomes. With a large number of medical notes collected from hospitals, there is an urgent need for developing effective models for predicting mortality based on them. In contrast to structured electronic health records, medical notes are unstructured texts written by experienced caregivers and contain more complicated information about patients, posing more challenges for modeling. Most previous studies rely on tedious hand-crafted features or generating indirect features based on some statistical models such as topic modeling, which might incur information loss for later model training. Recently, some deep models have been proposed to unify the stages of feature construction and model training. However, domain concept knowledge has been neglected, which is important to gain a better understanding of medical notes. To address the above issues, we propose novel Knowledge-aware Deep Dual Networks (K-DDN) for the text-based mortality prediction task. Specifically, a simple deep dual network is first proposed to fuse the representations of medical knowledge and raw text for prediction. Afterward, we incorporate a co-attention mechanism into the basic model, guiding the knowledge and text representation learning with the help of each other. Experimental results on two publicly real-world datasets show the proposed deep dual networks outperform state-of-the-art methods and the co-attention mechanism can further improve the performance.
KW - Deep learning
KW - Medical concept
KW - Mortality prediction
UR - https://www.scopus.com/pages/publications/85068007602
U2 - 10.1109/ICDE.2019.00127
DO - 10.1109/ICDE.2019.00127
M3 - 会议稿件
AN - SCOPUS:85068007602
T3 - Proceedings - International Conference on Data Engineering
SP - 1406
EP - 1417
BT - Proceedings - 2019 IEEE 35th International Conference on Data Engineering, ICDE 2019
PB - IEEE Computer Society
T2 - 35th IEEE International Conference on Data Engineering, ICDE 2019
Y2 - 8 April 2019 through 11 April 2019
ER -