TY - GEN
T1 - Is Aggregation the Only Choice? Federated Learning via Layer-wise Model Recombination
AU - Hu, Ming
AU - Yue, Zhihao
AU - Xie, Xiaofei
AU - Chen, Cheng
AU - Huang, Yihao
AU - Wei, Xian
AU - Lian, Xiang
AU - Liu, Yang
AU - Chen, Mingsong
N1 - Publisher Copyright:
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
PY - 2024/8/24
Y1 - 2024/8/24
N2 - Although Federated Learning (FL) enables global model training across clients without compromising their raw data, due to the unevenly distributed data among clients, existing Federated Averaging (FedAvg)-based methods suffer from the problem of low inference performance. Specifically, different data distributions among clients lead to various optimization directions of local models. Aggregating local models usually results in a low-generalized global model, which performs worse on most of the clients. To address the above issue, inspired by the observation from a geometric perspective that a well-generalized solution is located in a flat area rather than a sharp area, we propose a novel and heuristic FL paradigm named FedMR (Federated Model Recombination). The goal of FedMR is to guide the recombined models to be trained towards a flat area. Unlike conventional FedAvg-based methods, in FedMR, the cloud server recombines collected local models by shuffling each layer of them to generate multiple recombined models for local training on clients rather than an aggregated global model. Since the area of the flat area is larger than the sharp area, when local models are located in different areas, recombined models have a higher probability of locating in a flat area. When all recombined models are located in the same flat area, they are optimized towards the same direction. We theoretically analyze the convergence of model recombination. Experimental results show that, compared with state-of-the-art FL methods, FedMR can significantly improve the inference accuracy without exposing the privacy of each client.
AB - Although Federated Learning (FL) enables global model training across clients without compromising their raw data, due to the unevenly distributed data among clients, existing Federated Averaging (FedAvg)-based methods suffer from the problem of low inference performance. Specifically, different data distributions among clients lead to various optimization directions of local models. Aggregating local models usually results in a low-generalized global model, which performs worse on most of the clients. To address the above issue, inspired by the observation from a geometric perspective that a well-generalized solution is located in a flat area rather than a sharp area, we propose a novel and heuristic FL paradigm named FedMR (Federated Model Recombination). The goal of FedMR is to guide the recombined models to be trained towards a flat area. Unlike conventional FedAvg-based methods, in FedMR, the cloud server recombines collected local models by shuffling each layer of them to generate multiple recombined models for local training on clients rather than an aggregated global model. Since the area of the flat area is larger than the sharp area, when local models are located in different areas, recombined models have a higher probability of locating in a flat area. When all recombined models are located in the same flat area, they are optimized towards the same direction. We theoretically analyze the convergence of model recombination. Experimental results show that, compared with state-of-the-art FL methods, FedMR can significantly improve the inference accuracy without exposing the privacy of each client.
KW - federated learning
KW - generalization
KW - model recombination
KW - non-iid
UR - https://www.scopus.com/pages/publications/85203691290
U2 - 10.1145/3637528.3671722
DO - 10.1145/3637528.3671722
M3 - 会议稿件
AN - SCOPUS:85203691290
T3 - Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
SP - 1096
EP - 1107
BT - KDD 2024 - Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PB - Association for Computing Machinery
T2 - 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2024
Y2 - 25 August 2024 through 29 August 2024
ER -