Abstract
Thermoelectric devices enable direct conversion between thermal and electrical energy. Recent studies have indicated that the thin film/substrate heterostructure is effective in achieving high thermoelectric performance via decoupling the Seebeck coefficient and electrical conductivity otherwise adversely inter-dependent in homogenous bulk materials. However, the mechanism underlying the thin film/substrate heterostructure thermoelectricity remains unclear. In addition, the power output of the thin film/substrate heterostructure is limited to the nanowatt scale to date, falling short of the practical application requirement. Here, we fabricated the CrN/SrTiO3−x heterostructures with high thermoelectric output power and outstanding thermal stability. By varying the CrN film thickness and the reduction degree of SrTiO3−x substrate, the optimized power output and the power density have respectively reached 276 μW and 108 mW/cm2 for the 30 nm CrN film on a highly reduced surface of SrTiO3−x under a temperature difference of 300 K. The performance enhancement is attributed to the CrN/SrTiO3−x heterointerface, corroborated by the band bending as revealed by the scanning Kelvin probe microscopy. These results will stimulate further research efforts towards interface thermoelectrics.
| Original language | English |
|---|---|
| Pages (from-to) | 16-22 |
| Number of pages | 7 |
| Journal | Journal of Energy Chemistry |
| Volume | 64 |
| DOIs | |
| State | Published - Jan 2022 |
| Externally published | Yes |
Keywords
- CrN
- Heterostructure
- Interface thermoelectrics
- SrTiO
- Thin film