TY - JOUR
T1 - Insights into effects of operating temperature on the removal of pharmaceuticals/pesticides/synthetic organic compounds by membrane bioreactor process
AU - Wang, Qiaoying
AU - Zheng, Wenjia
AU - Wang, Yan
AU - Zhang, Tong
AU - Zhou, Zhen
AU - Wu, Zhichao
N1 - Publisher Copyright:
© 2023
PY - 2023/10/15
Y1 - 2023/10/15
N2 - In this study, the removal efficiency and mechanism of 8 kinds of typical micropollutants by membrane bioreactor (MBR) at different temperatures (i.e. 15, 25 and 35 °C) were investigated. MBR exhibited the high removal rate (>85%) for 3 kinds of industrial synthetic organic micropollutants (i.e. bisphenol A (BPA), 4-tert-octylphenol (TB) and 4-n-nonylphenol (NP)) with similar functional groups, structures and high hydrophobicity (Log D > 3.2). However, the removal rates of ibuprofen (IBU), carbamazepine (CBZ) and sulfamethoxazole (SMX) with pharmaceutical activity showed great discrepancy (i.e. 93%, 14.2% and 29%, respectively), while that of pesticides (i.e. acetochlor (Ac) and 2,4-dichlorophenoxy acetic acid (2,4-D) were both lower than 10%. The results showed that the operating temperature played a significant role in microbial growth and activities. High temperature (35 °C) led to a decreased removal efficiency for most of hydrophobic organic micropollutants, and was also not conducive for refractory CBZ due to the temperature sensitivity. At lower temperature (15 °C), a large amount of exopolysaccharides and proteins were released by microorganisms, which caused the inhibited microbial activity, poor flocculation and sedimentation, resulting in the polysaccharide-type membrane fouling. It was proved that dominant microbial degradation of 61.01%–92.73% and auxiliary adsorption of 5.29%–28.30% were the main mechanisms for micropollutant removal in MBR system except for pesticides due to the toxicity. Therefore, the removal rates of most micropollutants were highest at 25 °C due to the high activity sludge so as to enhance microbial adsorption and degradation.
AB - In this study, the removal efficiency and mechanism of 8 kinds of typical micropollutants by membrane bioreactor (MBR) at different temperatures (i.e. 15, 25 and 35 °C) were investigated. MBR exhibited the high removal rate (>85%) for 3 kinds of industrial synthetic organic micropollutants (i.e. bisphenol A (BPA), 4-tert-octylphenol (TB) and 4-n-nonylphenol (NP)) with similar functional groups, structures and high hydrophobicity (Log D > 3.2). However, the removal rates of ibuprofen (IBU), carbamazepine (CBZ) and sulfamethoxazole (SMX) with pharmaceutical activity showed great discrepancy (i.e. 93%, 14.2% and 29%, respectively), while that of pesticides (i.e. acetochlor (Ac) and 2,4-dichlorophenoxy acetic acid (2,4-D) were both lower than 10%. The results showed that the operating temperature played a significant role in microbial growth and activities. High temperature (35 °C) led to a decreased removal efficiency for most of hydrophobic organic micropollutants, and was also not conducive for refractory CBZ due to the temperature sensitivity. At lower temperature (15 °C), a large amount of exopolysaccharides and proteins were released by microorganisms, which caused the inhibited microbial activity, poor flocculation and sedimentation, resulting in the polysaccharide-type membrane fouling. It was proved that dominant microbial degradation of 61.01%–92.73% and auxiliary adsorption of 5.29%–28.30% were the main mechanisms for micropollutant removal in MBR system except for pesticides due to the toxicity. Therefore, the removal rates of most micropollutants were highest at 25 °C due to the high activity sludge so as to enhance microbial adsorption and degradation.
KW - Membrane bioreactor
KW - Pesticides
KW - Pharmaceuticals
KW - Synthetic organic compounds
KW - Temperature
UR - https://www.scopus.com/pages/publications/85168011019
U2 - 10.1016/j.envpol.2023.122145
DO - 10.1016/j.envpol.2023.122145
M3 - 文章
C2 - 37422084
AN - SCOPUS:85168011019
SN - 0269-7491
VL - 335
JO - Environmental Pollution
JF - Environmental Pollution
M1 - 122145
ER -