TY - JOUR
T1 - Insight into the roles of packing carriers and ultrasonication in anaerobic side-stream reactor coupled membrane bioreactors
T2 - Sludge reduction performance and mechanism
AU - Zheng, Yue
AU - Cheng, Cheng
AU - Zhou, Zhen
AU - Pang, Hongjian
AU - Chen, Liuyu
AU - Jiang, Lu Man
N1 - Publisher Copyright:
© 2019 Elsevier Ltd
PY - 2019/5/15
Y1 - 2019/5/15
N2 - The sludge in situ reduction process by inserting an anaerobic side-stream reactor (ASSR) in a sludge return line provides a cost-effective approach to reduce sludge production in activated sludge systems. In this study, four pilot-scale membrane bioreactors (MBRs), including an AO-MBR for control, ASSR coupled MBR (ASSR-MBR), a MBR with ASSR packed with carriers (AP-MBR) and an AP-MBR with part of sludge ultrasonicated before fed into ASSR (AUP-MBR) were operated in parallel to investigate enhancing effects of ultrasonication and packing carriers on sludge reduction and pollutants removal performance under both normal and low temperature. Low temperature showed negligible impact on COD removal, deteriorated NH4+–N and TN removal from 98.3% to 69.7% at 21.6 °C to 92.5% and 48.8% at 2.6 °C, and decreased sludge reduction efficiency (SRE) in ASSR-MBR. Packing carriers and ultrasonication both enhanced sludge reduction, especially under low temperature with SRE values increased from 8.2% of ASSR-MBR to 17.1% of AP-MBR and 32.6% of AUP-MBR at 4.5 ± 2.5 °C. Packing carriers and ultrasonication increased cell rupture by 11.1% and 14.5% in aerobic MBR, enhanced protease activity in ASSR by 60.0% and 116.3%, and reduced ATP content for heterotrophic metabolism by 31.4% and 7.3%, respectively. MiSeq sequencing results showed that packing carriers enriched hydrolytic bacteria (Terrimonas, Dechloromonas and Woodsholea), slow growers (Sulfuritalea, Thauera and Azospira) and predatory bacteria (Bdellovibrio and norank_Saprospiraceae), while ultrasonication further enriched hydrolytic bacteria (norank_Saccharibacteria and Ferruginibacter). Packing carriers is more cost-effective than ultrasonication to enhance sludge reduction by partial damage to bacterial cells and promoting better interaction between bacteria, enzymes and substrates to favor particles hydrolysis.
AB - The sludge in situ reduction process by inserting an anaerobic side-stream reactor (ASSR) in a sludge return line provides a cost-effective approach to reduce sludge production in activated sludge systems. In this study, four pilot-scale membrane bioreactors (MBRs), including an AO-MBR for control, ASSR coupled MBR (ASSR-MBR), a MBR with ASSR packed with carriers (AP-MBR) and an AP-MBR with part of sludge ultrasonicated before fed into ASSR (AUP-MBR) were operated in parallel to investigate enhancing effects of ultrasonication and packing carriers on sludge reduction and pollutants removal performance under both normal and low temperature. Low temperature showed negligible impact on COD removal, deteriorated NH4+–N and TN removal from 98.3% to 69.7% at 21.6 °C to 92.5% and 48.8% at 2.6 °C, and decreased sludge reduction efficiency (SRE) in ASSR-MBR. Packing carriers and ultrasonication both enhanced sludge reduction, especially under low temperature with SRE values increased from 8.2% of ASSR-MBR to 17.1% of AP-MBR and 32.6% of AUP-MBR at 4.5 ± 2.5 °C. Packing carriers and ultrasonication increased cell rupture by 11.1% and 14.5% in aerobic MBR, enhanced protease activity in ASSR by 60.0% and 116.3%, and reduced ATP content for heterotrophic metabolism by 31.4% and 7.3%, respectively. MiSeq sequencing results showed that packing carriers enriched hydrolytic bacteria (Terrimonas, Dechloromonas and Woodsholea), slow growers (Sulfuritalea, Thauera and Azospira) and predatory bacteria (Bdellovibrio and norank_Saprospiraceae), while ultrasonication further enriched hydrolytic bacteria (norank_Saccharibacteria and Ferruginibacter). Packing carriers is more cost-effective than ultrasonication to enhance sludge reduction by partial damage to bacterial cells and promoting better interaction between bacteria, enzymes and substrates to favor particles hydrolysis.
KW - Anaerobic side-stream reactor
KW - Carrier
KW - Microbial community
KW - Sludge reduction
KW - Ultrasonication
UR - https://www.scopus.com/pages/publications/85062443358
U2 - 10.1016/j.watres.2019.02.039
DO - 10.1016/j.watres.2019.02.039
M3 - 文章
C2 - 30852318
AN - SCOPUS:85062443358
SN - 0043-1354
VL - 155
SP - 310
EP - 319
JO - Water Research
JF - Water Research
ER -