Influence-aware Task Assignment in Spatial Crowdsourcing

Xuanhao Chen, Yan Zhao, Kai Zheng, Bin Yang, Christian S. Jensen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

20 Scopus citations

Abstract

With the widespread diffusion of smartphones, Spatial Crowdsourcing (SC), which aims to assign spatial tasks to mobile workers, has drawn increasing attention in both academia and industry. One of the major issues is how to best assign tasks to workers. Given a worker and a task, the worker will choose to accept the task based on her affinity towards the task, and the worker can propagate the information of the task to attract more workers to perform it. These factors can be measured as worker-task influence. Since workers' affinities towards tasks are different and task issuers may ask workers who performed tasks to propagate the information of tasks to attract more workers to perform them, it is important to analyze worker-task influence when making assignments. We propose and solve a novel influence-aware task assignment problem in SC, where tasks are assigned to workers in a manner that achieves high worker-task influence. In particular, we aim to maximize the number of assigned tasks and worker-task influence. To solve the problem, we first determine workers' affinities towards tasks by identifying workers' historical task-performing patterns. Next, a Historical Acceptance approach is developed to measure workers' willingness of performing a task, i.e., the probability of workers visiting the location of the task when they are informed. Next, we propose a Random reverse reachable-based Propagation Optimization algorithm that exploits reverse reachable sets to calculate the probability of workers being informed about tasks in a social network. Based on worker-task influence derived from the above three factors, we propose three influence-aware task assignment algorithms that aim to maximize the number of assigned tasks and worker-task influence. Extensive experiments on two real-world datasets offer detailed insight into the effectiveness of our solutions.

Original languageEnglish
Title of host publicationProceedings - 2022 IEEE 38th International Conference on Data Engineering, ICDE 2022
PublisherIEEE Computer Society
Pages2141-2153
Number of pages13
ISBN (Electronic)9781665408837
DOIs
StatePublished - 2022
Externally publishedYes
Event38th IEEE International Conference on Data Engineering, ICDE 2022 - Virtual, Online, Malaysia
Duration: 9 May 202212 May 2022

Publication series

NameProceedings - International Conference on Data Engineering
Volume2022-May
ISSN (Print)1084-4627
ISSN (Electronic)2375-0286

Conference

Conference38th IEEE International Conference on Data Engineering, ICDE 2022
Country/TerritoryMalaysia
CityVirtual, Online
Period9/05/2212/05/22

Keywords

  • spatial crowdsourcing
  • task assignment
  • worker-task influence

Fingerprint

Dive into the research topics of 'Influence-aware Task Assignment in Spatial Crowdsourcing'. Together they form a unique fingerprint.

Cite this