Improving neural relation extraction with implicit mutual relations

Jun Kuang, Yixin Cao, Jianbing Zheng, Xiangnan He, Ming Gao, Aoying Zhou

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

18 Scopus citations

Abstract

Relation extraction (RE) aims at extracting the relation between two entities from the text corpora. It is a crucial task for Knowledge Graph (KG) construction. Most existing methods predict the relation between an entity pair by learning the relation from the training sentences, which contain the targeted entity pair. In contrast to existing distant supervision approaches that suffer from insufficient training corpora to extract relations, our proposal of mining implicit mutual relation from the massive unlabeled corpora transfers the semantic information of entity pairs into the RE model, which is more expressive and semantically plausible. After constructing an entity proximity graph based on the implicit mutual relations, we preserve the semantic relations of entity pairs via embedding each vertex of the graph into a low-dimensional space. As a result, we can easily and flexibly integrate the implicit mutual relations and other entity information, such as entity types, into the existing RE methods.Our experimental results on a New York Times and another Google Distant Supervision datasets suggest that our proposed neural RE framework provides a promising improvement for the RE task, and significantly outperforms the state-of-the-art methods. Moreover, the component for mining implicit mutual relations is so flexible that can help to improve the performance of both CNN-based and RNN-based RE models significant.

Original languageEnglish
Title of host publicationProceedings - 2020 IEEE 36th International Conference on Data Engineering, ICDE 2020
PublisherIEEE Computer Society
Pages1021-1032
Number of pages12
ISBN (Electronic)9781728129037
DOIs
StatePublished - Apr 2020
Event36th IEEE International Conference on Data Engineering, ICDE 2020 - Dallas, United States
Duration: 20 Apr 202024 Apr 2020

Publication series

NameProceedings - International Conference on Data Engineering
Volume2020-April
ISSN (Print)1084-4627

Conference

Conference36th IEEE International Conference on Data Engineering, ICDE 2020
Country/TerritoryUnited States
CityDallas
Period20/04/2024/04/20

Keywords

  • Entity information
  • Implicit mutual relations
  • Relation extraction
  • Unlabeled data

Fingerprint

Dive into the research topics of 'Improving neural relation extraction with implicit mutual relations'. Together they form a unique fingerprint.

Cite this