TY - GEN
T1 - Improving neural relation extraction with implicit mutual relations
AU - Kuang, Jun
AU - Cao, Yixin
AU - Zheng, Jianbing
AU - He, Xiangnan
AU - Gao, Ming
AU - Zhou, Aoying
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/4
Y1 - 2020/4
N2 - Relation extraction (RE) aims at extracting the relation between two entities from the text corpora. It is a crucial task for Knowledge Graph (KG) construction. Most existing methods predict the relation between an entity pair by learning the relation from the training sentences, which contain the targeted entity pair. In contrast to existing distant supervision approaches that suffer from insufficient training corpora to extract relations, our proposal of mining implicit mutual relation from the massive unlabeled corpora transfers the semantic information of entity pairs into the RE model, which is more expressive and semantically plausible. After constructing an entity proximity graph based on the implicit mutual relations, we preserve the semantic relations of entity pairs via embedding each vertex of the graph into a low-dimensional space. As a result, we can easily and flexibly integrate the implicit mutual relations and other entity information, such as entity types, into the existing RE methods.Our experimental results on a New York Times and another Google Distant Supervision datasets suggest that our proposed neural RE framework provides a promising improvement for the RE task, and significantly outperforms the state-of-the-art methods. Moreover, the component for mining implicit mutual relations is so flexible that can help to improve the performance of both CNN-based and RNN-based RE models significant.
AB - Relation extraction (RE) aims at extracting the relation between two entities from the text corpora. It is a crucial task for Knowledge Graph (KG) construction. Most existing methods predict the relation between an entity pair by learning the relation from the training sentences, which contain the targeted entity pair. In contrast to existing distant supervision approaches that suffer from insufficient training corpora to extract relations, our proposal of mining implicit mutual relation from the massive unlabeled corpora transfers the semantic information of entity pairs into the RE model, which is more expressive and semantically plausible. After constructing an entity proximity graph based on the implicit mutual relations, we preserve the semantic relations of entity pairs via embedding each vertex of the graph into a low-dimensional space. As a result, we can easily and flexibly integrate the implicit mutual relations and other entity information, such as entity types, into the existing RE methods.Our experimental results on a New York Times and another Google Distant Supervision datasets suggest that our proposed neural RE framework provides a promising improvement for the RE task, and significantly outperforms the state-of-the-art methods. Moreover, the component for mining implicit mutual relations is so flexible that can help to improve the performance of both CNN-based and RNN-based RE models significant.
KW - Entity information
KW - Implicit mutual relations
KW - Relation extraction
KW - Unlabeled data
UR - https://www.scopus.com/pages/publications/85085864332
U2 - 10.1109/ICDE48307.2020.00093
DO - 10.1109/ICDE48307.2020.00093
M3 - 会议稿件
AN - SCOPUS:85085864332
T3 - Proceedings - International Conference on Data Engineering
SP - 1021
EP - 1032
BT - Proceedings - 2020 IEEE 36th International Conference on Data Engineering, ICDE 2020
PB - IEEE Computer Society
T2 - 36th IEEE International Conference on Data Engineering, ICDE 2020
Y2 - 20 April 2020 through 24 April 2020
ER -