Improving domain-adapted sentiment classification by deep adversarial mutual learning

Qianming Xue, Wei Zhang, Hongyuan Zha

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

33 Scopus citations

Abstract

Domain-adapted sentiment classification refers to training on a labeled source domain to well infer document-level sentiment on an unlabeled target domain. Most existing relevant models involve a feature extractor and a sentiment classifier, where the feature extractor works towards learning domaininvariant features from both domains, and the sentiment classifier is trained only on the source domain to guide the feature extractor. As such, they lack a mechanism to use sentiment polarity lying in the target domain. To improve domainadapted sentiment classification by learning sentiment from the target domain as well, we devise a novel deep adversarial mutual learning approach involving two groups of feature extractors, domain discriminators, sentiment classifiers, and label probers. The domain discriminators enable the feature extractors to obtain domain-invariant features. Meanwhile, the label prober in each group explores document sentiment polarity of the target domain through the sentiment prediction generated by the classifier in the peer group, and guides the learning of the feature extractor in its own group. The proposed approach achieves the mutual learning of the two groups in an end-to-end manner. Experiments on multiple public datasets indicate our method obtains the state-of-theart performance, validating the effectiveness of mutual learning through label probers.

Original languageEnglish
Title of host publicationAAAI 2020 - 34th AAAI Conference on Artificial Intelligence
PublisherAAAI press
Pages9362-9369
Number of pages8
ISBN (Electronic)9781577358350
StatePublished - 2020
Event34th AAAI Conference on Artificial Intelligence, AAAI 2020 - New York, United States
Duration: 7 Feb 202012 Feb 2020

Publication series

NameAAAI 2020 - 34th AAAI Conference on Artificial Intelligence

Conference

Conference34th AAAI Conference on Artificial Intelligence, AAAI 2020
Country/TerritoryUnited States
CityNew York
Period7/02/2012/02/20

Fingerprint

Dive into the research topics of 'Improving domain-adapted sentiment classification by deep adversarial mutual learning'. Together they form a unique fingerprint.

Cite this