TY - GEN
T1 - Image Completion Via Dual-Path Cooperative Filtering
AU - Shamsolmoali, Pourya
AU - Zareapoor, Masoumeh
AU - Granger, Eric
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Given the recent advances with image-generating algorithms, deep image completion methods have made significant progress. However, state-of-art methods typically provide poor cross-scene generalization, and generated masked areas often contain blurry artifacts. Predictive filtering is a method for restoring images, which predicts the most effective kernels based on the input scene. Motivated by this approach, we address image completion as a filtering problem. Deep feature-level semantic filtering is introduced to fill in missing information, while preserving local structure and generating visually realistic content. In particular, a Dual-path Cooperative Filtering (DCF) model is proposed, where one path predicts dynamic kernels, and the other path extracts multi-level features by using Fast Fourier Convolution to yield semantically coherent reconstructions. Experiments on three challenging image completion datasets show that our proposed DCF outperforms state-of-art methods.
AB - Given the recent advances with image-generating algorithms, deep image completion methods have made significant progress. However, state-of-art methods typically provide poor cross-scene generalization, and generated masked areas often contain blurry artifacts. Predictive filtering is a method for restoring images, which predicts the most effective kernels based on the input scene. Motivated by this approach, we address image completion as a filtering problem. Deep feature-level semantic filtering is introduced to fill in missing information, while preserving local structure and generating visually realistic content. In particular, a Dual-path Cooperative Filtering (DCF) model is proposed, where one path predicts dynamic kernels, and the other path extracts multi-level features by using Fast Fourier Convolution to yield semantically coherent reconstructions. Experiments on three challenging image completion datasets show that our proposed DCF outperforms state-of-art methods.
KW - Deep Learning
KW - Image Completion
KW - Image Inpainting
UR - https://www.scopus.com/pages/publications/86000380765
U2 - 10.1109/ICASSP49357.2023.10097260
DO - 10.1109/ICASSP49357.2023.10097260
M3 - 会议稿件
AN - SCOPUS:86000380765
T3 - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
BT - ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
Y2 - 4 June 2023 through 10 June 2023
ER -