Hybrid Atlas Building with Deep Registration Priors

Nian Wu, Jian Wang, Miaomiao Zhang, Guixu Zhang, Yaxin Peng, Chaomin Shen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

Registration-based atlas building often poses computational challenges in high-dimensional image spaces. In this paper, we introduce a novel hybrid atlas building algorithm that fast estimates atlas from large-scale image datasets with much reduced computational cost. In contrast to previous approaches that iteratively perform registration tasks between an estimated atlas and individual images, we propose to use learned priors of registration from pre-trained neural networks. This newly developed hybrid framework features several advantages of (i) providing an efficient way of atlas building without losing the quality of results, and (ii) offering flexibility in utilizing a wide variety of deep learning based registration methods. We demonstrate the effectiveness of this proposed model on 3D brain magnetic resonance imaging (MRI) scans.

Original languageEnglish
Title of host publicationISBI 2022 - Proceedings
Subtitle of host publication2022 IEEE International Symposium on Biomedical Imaging
PublisherIEEE Computer Society
ISBN (Electronic)9781665429238
DOIs
StatePublished - 2022
Event19th IEEE International Symposium on Biomedical Imaging, ISBI 2022 - Kolkata, India
Duration: 28 Mar 202231 Mar 2022

Publication series

NameProceedings - International Symposium on Biomedical Imaging
Volume2022-March
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Conference

Conference19th IEEE International Symposium on Biomedical Imaging, ISBI 2022
Country/TerritoryIndia
CityKolkata
Period28/03/2231/03/22

Fingerprint

Dive into the research topics of 'Hybrid Atlas Building with Deep Registration Priors'. Together they form a unique fingerprint.

Cite this