TY - GEN
T1 - How does team composition affect knowledge gain of users in collaborative web search?
AU - Xu, Luyan
AU - Zhou, Xuan
AU - Gadiraju, Ujwal
N1 - Publisher Copyright:
© 2020 ACM.
PY - 2020/7/13
Y1 - 2020/7/13
N2 - Studies in searching as learning (SAL) have revealed that user knowledge gain not only manifests over a long-term learning period, but also occurs in single short-term web search sessions. Though prior works have shown that the knowledge gain of collaborators can be influenced by user demographics and searching strategies in long-term collaborative learning, little is known about the effect of these factors on user knowledge gain in short-term collaborative web search. In this paper, we present a study addressing the knowledge gain of user pairs in single collaborative web search sessions. Using crowdsourcing we recruited 454 unique users (227 random pairs), who then collaboratively worked on informational search tasks spanning 10 different topics and information needs. We investigated how users' demographics and traits, and the interaction between these factors could influence their knowledge gain. We found that in contrast to offline collaboration cases, user demographics such as gender, age, etc. do not significantly effect users' knowledge gain in collaborative web search sessions. Instead, our results highlight the presence of labor division of queries and particular interaction patterns in communication that facilitate knowledge gain in user pairs. Based on these findings, we propose a multiple linear regression model to predict the knowledge gain of users in collaborative web search sessions from the perspective of team composition.
AB - Studies in searching as learning (SAL) have revealed that user knowledge gain not only manifests over a long-term learning period, but also occurs in single short-term web search sessions. Though prior works have shown that the knowledge gain of collaborators can be influenced by user demographics and searching strategies in long-term collaborative learning, little is known about the effect of these factors on user knowledge gain in short-term collaborative web search. In this paper, we present a study addressing the knowledge gain of user pairs in single collaborative web search sessions. Using crowdsourcing we recruited 454 unique users (227 random pairs), who then collaboratively worked on informational search tasks spanning 10 different topics and information needs. We investigated how users' demographics and traits, and the interaction between these factors could influence their knowledge gain. We found that in contrast to offline collaboration cases, user demographics such as gender, age, etc. do not significantly effect users' knowledge gain in collaborative web search sessions. Instead, our results highlight the presence of labor division of queries and particular interaction patterns in communication that facilitate knowledge gain in user pairs. Based on these findings, we propose a multiple linear regression model to predict the knowledge gain of users in collaborative web search sessions from the perspective of team composition.
KW - Collaborative web search
KW - Knowledge gain
KW - Team composition
UR - https://www.scopus.com/pages/publications/85089495057
U2 - 10.1145/3372923.3404784
DO - 10.1145/3372923.3404784
M3 - 会议稿件
AN - SCOPUS:85089495057
T3 - Proceedings of the 31st ACM Conference on Hypertext and Social Media, HT 2020
SP - 91
EP - 100
BT - Proceedings of the 31st ACM Conference on Hypertext and Social Media, HT 2020
PB - Association for Computing Machinery, Inc
T2 - 31st ACM Conference on Hypertext and Social Media, HT 2020
Y2 - 13 July 2020 through 15 July 2020
ER -