TY - JOUR
T1 - Historical records of coastal eutrophication-induced hypoxia
AU - Gooday, A. J.
AU - Jorissen, F.
AU - Levin, L. A.
AU - Middelburg, J. J.
AU - Naqvi, S. W.A.
AU - Rabalais, N. N.
AU - Scranton, M.
AU - Zhang, J.
PY - 2009
Y1 - 2009
N2 - Abstract. Under certain conditions, sediment cores from coastal settings subject to hypoxia can yield records of environmental changes over time scales ranging from decades to millennia, sometimes with a resolution of as little as a few years. A variety of biological and geochemical indicators (proxies) derived from such cores have been used to reconstruct the development of eutrophication and hypoxic conditions over time. Those based on (1) the preserved remains of benthic organisms (mainly foraminiferans and ostracods), (2) sedimentary features (e.g. laminations) and (3) sediment chemistry and mineralogy (e.g. presence of sulphides and redox-sensitive trace elements) reflect conditions at or close to the seafloor. Those based on (4) the preserved remains of planktonic organisms (mainly diatoms and dinoflagellates), (5) pigments and lipid biomarkers derived from prokaryotes and eukaryotes and (6) organic C, N and their stable isotope ratios reflect conditions in the water column. However, the interpretation of these indicators is not straightforward. A central difficulty concerns the fact that hypoxia is strongly correlated with, and often induced by, organic enrichment caused by eutrophication, making it difficult to separate the effects of these phenomena in sediment records. The problem is compounded by the enhanced preservation in anoxic and hypoxic sediments of organic microfossils and biomarkers indicating eutrophication. The use of hypoxia-specific proxies, such as the trace metals molybdenum and rhenium and the bacterial biomarker isorenieratene, together with multi-proxy approaches, may provide a way forward. All proxies of bottom-water hypoxia are basically qualitative; their quantification presents a major challenge to which there is currently no satisfactory solution. Finally, it is important to separate the effects of natural ecosystem variability from anthropogenic effects. Despite these problems, in the absence of historical data for dissolved oxygen concentrations, the analysis of sediment cores can provide plausible reconstructions of the temporal development of humaninduced hypoxia, and associated eutrophication, in vulnerable coastal environments.
AB - Abstract. Under certain conditions, sediment cores from coastal settings subject to hypoxia can yield records of environmental changes over time scales ranging from decades to millennia, sometimes with a resolution of as little as a few years. A variety of biological and geochemical indicators (proxies) derived from such cores have been used to reconstruct the development of eutrophication and hypoxic conditions over time. Those based on (1) the preserved remains of benthic organisms (mainly foraminiferans and ostracods), (2) sedimentary features (e.g. laminations) and (3) sediment chemistry and mineralogy (e.g. presence of sulphides and redox-sensitive trace elements) reflect conditions at or close to the seafloor. Those based on (4) the preserved remains of planktonic organisms (mainly diatoms and dinoflagellates), (5) pigments and lipid biomarkers derived from prokaryotes and eukaryotes and (6) organic C, N and their stable isotope ratios reflect conditions in the water column. However, the interpretation of these indicators is not straightforward. A central difficulty concerns the fact that hypoxia is strongly correlated with, and often induced by, organic enrichment caused by eutrophication, making it difficult to separate the effects of these phenomena in sediment records. The problem is compounded by the enhanced preservation in anoxic and hypoxic sediments of organic microfossils and biomarkers indicating eutrophication. The use of hypoxia-specific proxies, such as the trace metals molybdenum and rhenium and the bacterial biomarker isorenieratene, together with multi-proxy approaches, may provide a way forward. All proxies of bottom-water hypoxia are basically qualitative; their quantification presents a major challenge to which there is currently no satisfactory solution. Finally, it is important to separate the effects of natural ecosystem variability from anthropogenic effects. Despite these problems, in the absence of historical data for dissolved oxygen concentrations, the analysis of sediment cores can provide plausible reconstructions of the temporal development of humaninduced hypoxia, and associated eutrophication, in vulnerable coastal environments.
UR - https://www.scopus.com/pages/publications/69249128352
U2 - 10.5194/bg-6-1707-2009
DO - 10.5194/bg-6-1707-2009
M3 - 文献综述
AN - SCOPUS:69249128352
SN - 1726-4170
VL - 6
SP - 1707
EP - 1745
JO - Biogeosciences
JF - Biogeosciences
IS - 8
ER -