Hierarchical Contrastive Inconsistency Learning for Deepfake Video Detection

Zhihao Gu, Taiping Yao, Yang Chen, Shouhong Ding, Lizhuang Ma

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

31 Scopus citations

Abstract

With the rapid development of Deepfake techniques, the capacity of generating hyper-realistic faces has aroused public concerns in recent years. The temporal inconsistency which derives from the contrast of facial movements between pristine and forged videos can serve as an efficient cue in identifying Deepfakes. However, most existing approaches tend to impose binary supervision to model it, which restricts them to only focusing on the category-level discrepancies. In this paper, we propose a novel Hierarchical Contrastive Inconsistency Learning framework (HCIL) with a two-level contrastive paradigm. Specially, sampling multiply snippets to form the input, HCIL performs contrastive learning from both local and global perspectives to capture more general and intrinsical temporal inconsistency between real and fake videos. Moreover, we also incorporate a region-adaptive module for intra-snippet inconsistency mining and an inter-snippet fusion module for cross-snippet information fusion, which further facilitates the inconsistency learning. Extensive experiments and visualizations demonstrate the effectiveness of our method against SOTA competitors on four Deepfake video datasets, i.e., FaceForensics++, Celeb-DF, DFDC, and Wild-Deepfake.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2022 - 17th European Conference, Proceedings
EditorsShai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, Tal Hassner
PublisherSpringer Science and Business Media Deutschland GmbH
Pages596-613
Number of pages18
ISBN (Print)9783031197741
DOIs
StatePublished - 2022
Externally publishedYes
Event17th European Conference on Computer Vision, ECCV 2022 - Tel Aviv, Israel
Duration: 23 Oct 202227 Oct 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13672 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference17th European Conference on Computer Vision, ECCV 2022
Country/TerritoryIsrael
CityTel Aviv
Period23/10/2227/10/22

Keywords

  • Deepfake video detection
  • Inconsistency learning

Fingerprint

Dive into the research topics of 'Hierarchical Contrastive Inconsistency Learning for Deepfake Video Detection'. Together they form a unique fingerprint.

Cite this