TY - JOUR
T1 - Green polyaspartic acid as a novel permanganate activator for enhanced degradation of organic contaminants
T2 - Role of reactive Mn(III) species
AU - Yu, Yanghai
AU - Chen, Tiansheng
AU - Guan, Xiaohong
AU - Dong, Hongyu
AU - Qiao, Junlian
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/10/15
Y1 - 2023/10/15
N2 - Attention has been long focused on enhancing permanganate (Mn(VII)) oxidation capacity for eliminating organic contaminants via generating active manganese intermediates (AMnIs). Nevertheless, limited consideration has been given to the unnecessary consumption of Mn(VII) due to the spontaneous disproportionation of AMnIs during their formation. In this work, we innovatively introduced green polyaspartic acid (PASP) as both reducing and chelating agents to activate Mn(VII) to enhance the oxidation capacity and utilization efficiency of Mn(VII). Multiple lines of evidence suggest that Mn(III), existing as Mn(III)-PASP complex, was generated and dominated the degradation of bisphenol A (BPA) in the Mn(VII)/PASP system. The stabilized Mn(III) species enabled Mn(VII) utilization efficiency in the Mn(VII)/PASP system to be higher than that in Mn(VII) alone. Moreover, the electrophilic Mn(III) species was verified to mainly attack the inclusive benzene ring and isopropyl group to realize BPA oxidation and its toxicity reduction in the Mn(VII)/PASP system. In addition, the Mn(VII)/PASP system showed the potential for selectively oxidizing organic contaminants bearing phenol and aniline moieties in real waters without interference from most of coexisting water matrices. This work brightens an overlooked route to both high oxidation capacity and efficient Mn(VII) utilization in the Mn(VII)-based oxidation processes.
AB - Attention has been long focused on enhancing permanganate (Mn(VII)) oxidation capacity for eliminating organic contaminants via generating active manganese intermediates (AMnIs). Nevertheless, limited consideration has been given to the unnecessary consumption of Mn(VII) due to the spontaneous disproportionation of AMnIs during their formation. In this work, we innovatively introduced green polyaspartic acid (PASP) as both reducing and chelating agents to activate Mn(VII) to enhance the oxidation capacity and utilization efficiency of Mn(VII). Multiple lines of evidence suggest that Mn(III), existing as Mn(III)-PASP complex, was generated and dominated the degradation of bisphenol A (BPA) in the Mn(VII)/PASP system. The stabilized Mn(III) species enabled Mn(VII) utilization efficiency in the Mn(VII)/PASP system to be higher than that in Mn(VII) alone. Moreover, the electrophilic Mn(III) species was verified to mainly attack the inclusive benzene ring and isopropyl group to realize BPA oxidation and its toxicity reduction in the Mn(VII)/PASP system. In addition, the Mn(VII)/PASP system showed the potential for selectively oxidizing organic contaminants bearing phenol and aniline moieties in real waters without interference from most of coexisting water matrices. This work brightens an overlooked route to both high oxidation capacity and efficient Mn(VII) utilization in the Mn(VII)-based oxidation processes.
KW - Oxidation capacity
KW - Permanganate
KW - Permanganate utilization efficiency
KW - Polyaspartic acid
KW - Reactive Mn(III) species
UR - https://www.scopus.com/pages/publications/85171683625
U2 - 10.1016/j.jhazmat.2023.132433
DO - 10.1016/j.jhazmat.2023.132433
M3 - 文章
C2 - 37659238
AN - SCOPUS:85171683625
SN - 0304-3894
VL - 460
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
M1 - 132433
ER -