TY - JOUR
T1 - Gram-Scale production of Cu3P-Cu2O Janus nanoparticles into nitrogen and phosphorous doped porous carbon framework as bifunctional electrocatalysts for overall water splitting
AU - Zhu, Jinliang
AU - Jiang, Enjun
AU - Wang, Xueqian
AU - Pan, Zhiyi
AU - Xu, Xingtao
AU - Ma, Shaojian
AU - Kang Shen, Pei
AU - Pan, Likun
AU - Eguchi, Miharu
AU - Nanjundan, Ashok Kumar
AU - Shapter, Joe
AU - Yamauchi, Yusuke
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2022/1/1
Y1 - 2022/1/1
N2 - Transition metal phosphides and oxides are heralded as inexpensive alternatives to precious metal catalysts for the electrochemical hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), respectively. Combing both transition metal phosphides and oxides into one catalyst system can generate a bifunctional electrocatalyst for overall water splitting. Still, the synthesis of such a catalyst has always been very challenging. Herein, we report the synthesis of Cu3P-Cu2O Janus bifunctional catalysts into a N, P co-doped 3D hierarchically porous carbon framework (Cu3P-Cu2O/NPC). Simple carbonization of Cu2+-containing ion-exchange resins with KOH make hundred-gram scale production of this superior catalyst possible. The Janus Cu3P-Cu2O heterostructure within a N, P-doped hierarchically porous carbon framework provides increased mass transport, enhanced electrocatalytic activity, and promoted cycling durability. As an electrocatalyst, the designed Cu3P-Cu2O/NPC delivers superior bifunctional activity for both the HER and OER in 1 M KOH, including extremely low overpotentials (138 mV for HER and 286 mV for OER) to reach a current density of 10 mA cm−2 and small Tafel slopes (62.64 mV dec-1 for HER and 79.02 mV dec-1 for OER). More impressively, the Cu3P-Cu2O/NPC-assembled electrolyzer needs drive voltages of only approximately 1.57 and 1.81 V to achieve current densities of 10 and 50 mV cm−2, respectively, demonstrating a superior electrocatalytic activity compared to the state-of-the-art electrolyzer (Pt/C || RuO2/C), and exhibits ultrahigh stability over a week of continuous overall water splitting reaction. This work highlights the significance of nanoengineering on the production of highly efficient electrocatalysts and provides a promising bifunctional electrocatalyst for future industrial implementation.
AB - Transition metal phosphides and oxides are heralded as inexpensive alternatives to precious metal catalysts for the electrochemical hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), respectively. Combing both transition metal phosphides and oxides into one catalyst system can generate a bifunctional electrocatalyst for overall water splitting. Still, the synthesis of such a catalyst has always been very challenging. Herein, we report the synthesis of Cu3P-Cu2O Janus bifunctional catalysts into a N, P co-doped 3D hierarchically porous carbon framework (Cu3P-Cu2O/NPC). Simple carbonization of Cu2+-containing ion-exchange resins with KOH make hundred-gram scale production of this superior catalyst possible. The Janus Cu3P-Cu2O heterostructure within a N, P-doped hierarchically porous carbon framework provides increased mass transport, enhanced electrocatalytic activity, and promoted cycling durability. As an electrocatalyst, the designed Cu3P-Cu2O/NPC delivers superior bifunctional activity for both the HER and OER in 1 M KOH, including extremely low overpotentials (138 mV for HER and 286 mV for OER) to reach a current density of 10 mA cm−2 and small Tafel slopes (62.64 mV dec-1 for HER and 79.02 mV dec-1 for OER). More impressively, the Cu3P-Cu2O/NPC-assembled electrolyzer needs drive voltages of only approximately 1.57 and 1.81 V to achieve current densities of 10 and 50 mV cm−2, respectively, demonstrating a superior electrocatalytic activity compared to the state-of-the-art electrolyzer (Pt/C || RuO2/C), and exhibits ultrahigh stability over a week of continuous overall water splitting reaction. This work highlights the significance of nanoengineering on the production of highly efficient electrocatalysts and provides a promising bifunctional electrocatalyst for future industrial implementation.
KW - Bifunctional electrocatalyst
KW - Janus nanoparticles
KW - Overall water splitting
KW - Porous carbon
UR - https://www.scopus.com/pages/publications/85109201490
U2 - 10.1016/j.cej.2021.130946
DO - 10.1016/j.cej.2021.130946
M3 - 文章
AN - SCOPUS:85109201490
SN - 1385-8947
VL - 427
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 130946
ER -